圆锥曲线弦长万能公式的推导

“圆锥曲线弦长万能公式的推导”相关的资料有哪些?“圆锥曲线弦长万能公式的推导”相关的范文有哪些?怎么写?下面是小编为您精心整理的“圆锥曲线弦长万能公式的推导”相关范文大全或资料大全,欢迎大家分享。

圆锥曲线三种弦长问题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线三种弦长问题的探究

在高考中,圆锥曲线的综合问题,常以直线与圆锥曲线的性质及其位置关系的有关知识为主体,而直线与圆锥曲线的弦长问题,是在圆锥曲线中常见一个重要方面,下面对圆锥曲线中出现的有关弦长问题作简单的探究: 一、一般弦长计算问题:

xyx2y2例1、已知椭圆C:2?2?1?a?b?0?,直线l1:??1被椭圆C截得的弦长为22,abab且e?6,过椭圆C的右焦点且斜率为3的直线l2被椭圆C截的弦长AB, 3⑴求椭圆的方程;⑵弦AB的长度.

思路分析:把直线l2的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由l1被椭圆C截得的弦长为22,得a?b?8,………①

22c22622 又e?,即2?,所以a?3b………………………….②

a33x2y2??1. 联立①②得a?6,b?2,所以所求的椭圆的方程为6222 ⑵∴椭圆的右焦点F?2,0?,∴l2的方程为:y?3?x?2?, 代入椭圆C的方程,化简得,5x?18x?6?0 由韦达定理知,x1?x2?从而x1?x2?2186,x1x2? 552?x1?x2??4x1x2?26, 5由弦长公式,得AB?1?k2x1?x2?1???32?2646?, 55即弦

圆锥曲线三种弦长问题

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线三种弦长问题的探究

在高考中,圆锥曲线的综合问题,常以直线与圆锥曲线的性质及其位置关系的有关知识为主体,而直线与圆锥曲线的弦长问题,是在圆锥曲线中常见一个重要方面,下面对圆锥曲线中出现的有关弦长问题作简单的探究: 一、一般弦长计算问题:

xyx2y2例1、已知椭圆C:2?2?1?a?b?0?,直线l1:??1被椭圆C截得的弦长为22,abab且e?6,过椭圆C的右焦点且斜率为3的直线l2被椭圆C截的弦长AB, 3⑴求椭圆的方程;⑵弦AB的长度.

思路分析:把直线l2的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由l1被椭圆C截得的弦长为22,得a?b?8,………①

22c22622 又e?,即2?,所以a?3b………………………….②

a33x2y2??1. 联立①②得a?6,b?2,所以所求的椭圆的方程为6222 ⑵∴椭圆的右焦点F?2,0?,∴l2的方程为:y?3?x?2?, 代入椭圆C的方程,化简得,5x?18x?6?0 由韦达定理知,x1?x2?从而x1?x2?2186,x1x2? 552?x1?x2??4x1x2?26, 5由弦长公式,得AB?1?k2x1?x2?1???32?2646?, 55即弦

圆锥曲线焦点弦长的一个公式在高考中的妙用

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

qqqq

圆锥曲线焦点弦长的一个公式在高考中的妙用

圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?

定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F,设倾斜角为?的直线l经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则

(1)当焦点在x轴上时,弦AB的长|AB|?H; 22|1?ecos?|(2)当焦点在y轴上时,弦AB的长|AB|?H.

|1?e2sin2?|本文仅对焦点在x轴上,中心在原点的双曲线为例证明,其它情形请读者自证.

x2y22b2c证明:设双曲线方程为2?2?1(a>0,b>0),通径H?,离心率e?,弦AB

aaab所在的直线l的方程为y?k(x?c)(其中k?tan?,?为直线l的倾斜角),其参数方程为

?x??c

圆锥曲线 中点弦2

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

关于圆锥曲线的中点弦问题

直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:

(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题; (3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题

x2y2

1内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。 例1 过椭圆

164

解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:

(4k2 1)x2 8(2k2 k)x 4(2k 1)2 16 0

又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x1,x2是方程的两个根,于是

xx8(2k2 k)1 2 4k2

1

, x2 又M为AB的中点,所以

1 x24(2k2 k)

4k2 1

2, 解得k 1

2

故所求直线方程为x 2y 4 0。

解法二:设直线与椭圆的交点为A(x1,y1),B(x2,y2),M(2,1)为AB的中点, 所以x1 x2 4,y1 y2 2,

又A、B两点在椭圆上,则x2

1 4y2

2

2

1 16,x2 4

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线的极坐标方程

知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹.

以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系.

ep 椭圆、双曲线、抛物线统一的极坐标方程为: ??.

1?ecos? 其中p是定点F到定直线的距离,p>0 . 当0<e<1时,方程表示椭圆;

当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;

当e=1时,方程表示开口向右的抛物线.

ep

1+ecos?则0<e<1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e>1方程表示极点在左焦点上的双曲线

ep(2 )若??

1-esin?当 0<e<1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e>1时!方程表示极点在上焦点的双曲线

ep(3)??

1+esin?当 0<e<1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口

圆锥曲线的极坐标方程、焦半径公式、焦点弦公式

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线的极坐标方程

知识点精析 椭圆、双曲线、抛物线可以统一定义为:与一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e的点的轨迹.

以椭圆的左焦点(双曲线的右焦点、抛物线的焦点)为极点,过点F作相应准线的垂线,垂足为K,以FK的反向延长线为极轴建立极坐标系.

ep 椭圆、双曲线、抛物线统一的极坐标方程为: ??.

1?ecos? 其中p是定点F到定直线的距离,p>0 . 当0<e<1时,方程表示椭圆;

当e>1时,方程表示双曲线,若ρ>0,方程只表示双曲线右支,若允许ρ<0,方程就表示整个双曲线;

当e=1时,方程表示开口向右的抛物线.

ep

1+ecos?则0<e<1当时,方程表示极点在右焦点上的椭圆 当e=1时时,方程表示开口向左的抛物线 当e>1方程表示极点在左焦点上的双曲线

ep(2 )若??

1-esin?当 0<e<1时,方程表示极点在下焦点的椭圆 当e=1时,方程表示开口向上的抛物线

当 e>1时!方程表示极点在上焦点的双曲线

ep(3)??

1+esin?当 0<e<1时,方程表示极点在上焦点的椭圆 当e=1时,方程表示开口

圆锥曲线焦点弦长公式(极坐标参数方程)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线 焦点弦长公式 极坐标参数方程 快 准 稳

圆锥曲线焦点弦长公式(极坐标方程)

圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?

定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F,设倾斜角为 的直线l经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则

(1)当焦点在x轴上时,弦AB的长|AB|

H

; 22

|1 ecos |

(2)当焦点在y轴上时,弦AB的长|AB|

推论:

H

.

|1 e2sin2 |

|AB| (1)焦点在x轴上,当A、B在椭圆、抛物线或双曲线的一支上时,

当A、B不在双曲线的一支上时,|AB|

H

1 e2cos2

H

;当圆锥曲线是抛物线时,

e2cos2 1

|AB|

H

. 2

sin

H

1 e2sin2

|AB| (2)焦

圆锥曲线焦点弦长公式(极坐标参数方程)

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥曲线 焦点弦长公式 极坐标参数方程 快 准 稳

圆锥曲线焦点弦长公式(极坐标方程)

圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?

定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F,设倾斜角为 的直线l经过F,且与圆锥曲线交于A、B两点,记圆锥曲线的离心率为e,通径长为H,则

(1)当焦点在x轴上时,弦AB的长|AB|

H

; 22

|1 ecos |

(2)当焦点在y轴上时,弦AB的长|AB|

推论:

H

.

|1 e2sin2 |

|AB| (1)焦点在x轴上,当A、B在椭圆、抛物线或双曲线的一支上时,

当A、B不在双曲线的一支上时,|AB|

H

1 e2cos2

H

;当圆锥曲线是抛物线时,

e2cos2 1

|AB|

H

. 2

sin

H

1 e2sin2

|AB| (2)焦

解圆锥曲线中点弦问题的通法

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥

线差

A(2,1),所以z,+x2一玉兹煞娑=4,

所以k=--詈,直线方程为y--l一一詈(z一2),即

9z+8y--26=0.

巾点题的曲弦逦法去

‘,

●●

蟛毒裳曩嘉案曩鏊嚣等萋萎釜兰星奏蓑喜考

弦的中点坐标联系起来,相互转化,进而求解;另外涉及垂直关系往往也是利用韦达定理、设而不求来简化运算.

■r’,.

◇河北张艳红

名例2已知双曲线z2—2y2—4,求以(1,1)为中

点的弦的长度.

圆锥曲线中点弦问题是高考常考内容之一,这部分内容是对数学知识的综合考查,注重对数学思想和方法的运用,因此考生接受起来比较困难,但我们只要掌握解此类题的通性通法,淡化特殊技巧,便可使复杂问题简单化.下面我们就来谈谈在圆锥曲线中有关中点弦问题的通性通法.1通法归纳

1)韦达定理法

将直线方程代人圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.

2)点差法

2(y}一y2).故此弦斜率志一zYl一-zY.__丝z2=淼=21.

雁=J4-4x(-9)一_√l+{一5抠.

决,这就是“点差法”的灵活应用.

■P’,

Q/解析

依题意,设弦端点为A(xl,Y1),B(xz,yz),则z--2yi一4,z;一2y;----4,所以zi—z;一

此弦直线方

解圆锥曲线中点弦问题的通法

标签:文库时间:2025-01-06
【bwwdw.com - 博文网】

圆锥

线差

A(2,1),所以z,+x2一玉兹煞娑=4,

所以k=--詈,直线方程为y--l一一詈(z一2),即

9z+8y--26=0.

巾点题的曲弦逦法去

‘,

●●

蟛毒裳曩嘉案曩鏊嚣等萋萎釜兰星奏蓑喜考

弦的中点坐标联系起来,相互转化,进而求解;另外涉及垂直关系往往也是利用韦达定理、设而不求来简化运算.

■r’,.

◇河北张艳红

名例2已知双曲线z2—2y2—4,求以(1,1)为中

点的弦的长度.

圆锥曲线中点弦问题是高考常考内容之一,这部分内容是对数学知识的综合考查,注重对数学思想和方法的运用,因此考生接受起来比较困难,但我们只要掌握解此类题的通性通法,淡化特殊技巧,便可使复杂问题简单化.下面我们就来谈谈在圆锥曲线中有关中点弦问题的通性通法.1通法归纳

1)韦达定理法

将直线方程代人圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.

2)点差法

2(y}一y2).故此弦斜率志一zYl一-zY.__丝z2=淼=21.

雁=J4-4x(-9)一_√l+{一5抠.

决,这就是“点差法”的灵活应用.

■P’,

Q/解析

依题意,设弦端点为A(xl,Y1),B(xz,yz),则z--2yi一4,z;一2y;----4,所以zi—z;一

此弦直线方