九年级上册数学锐角三角函数
“九年级上册数学锐角三角函数”相关的资料有哪些?“九年级上册数学锐角三角函数”相关的范文有哪些?怎么写?下面是小编为您精心整理的“九年级上册数学锐角三角函数”相关范文大全或资料大全,欢迎大家分享。
九年级培优锐角三角函数
锐角三角函数
例题精讲
模块一 三角函数基础
一、
锐角三角函数的定义
如图所示,在Rt△ABC中,a、b、c分别为?A、?B、?C的对边.
BcaCbA
(1)正弦:Rt?ABC中,锐角A的对边与斜边的比叫做?A的正弦,记作sinA,即sinA?a. cb(2)余弦:Rt?ABC中,锐角A的邻边与斜边的比叫做?A的余弦,记作cosA,即cosA?.
c (3)正切:Rt?ABC中,锐角A的对边与邻边的比叫做?A的正切,记作tanA,即tanA?注意:
a. b① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sinA、cosA、tanA分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin与A、
cos与A、tan与A的乘积.
③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、
特殊角三角函数
0? 0 三角函数 sinA 30? 1 245? 60? 90? 2 22 23 21 21 0 cosA 1 3 2 初中数学.锐角三角函数
tanA 0 3 31 3 ?
这些特殊角的三
锐角三角函数
龙文学校 教师一对一
www.lwgxh.com龙文学校个性化辅导资料 启迪思维,点拨方法,开发潜能,直线提分!
第28章:锐角三角函数
一、基础知识
1.定义:如图在△ABC中,∠C为直角,
我们把锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA;sinA= sinA?a c把锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA;cosA?b ca b把锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA 。tanA?把锐角∠A的邻边与对边的比叫做∠A的余切,记作cosA。cosA?2、三角函数值
(1)特殊角的三角函数值 角度 0° 三角函数 sinA 0 30° 45° 60° 90° 1 b a1 23 23 32 23 2cosA 1 12 221 0 tanA 0 3 不存在 (2)锐角三角函数值的性质。 锐角三角函数的大小比较:
在0??A?90?时,随着A的增大,正弦值越来越大,而余弦值越来越小. 即:sinA是增函数,cosA减函数。
1锐角三角函数值都是正数。 ○
2当角度在090间变化时:正弦、正切值随着角度的增大而增大;余弦、余切随着角度的增大而减小。 ○
3、 同角、互余角的
九年级数学锐角三角函数测试题
数学:第28章 锐角三角函数测试题B(人教新课标九年级下)
一、 选择题(每小题3分,共30分)
1、在Rt△ABC中,∠C=90°,CD⊥AB于点D,已知AC=5,BC=2,那么sin∠ACD=( )
5323A、 B、 C、
255 D、
52
2、如图1,某飞机于空中A处探测到地平面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为( )
A、1200m B、2400m C、4003m D、12003m 3、(08襄樊市)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为( ) A.
12 B.
22 C.32 D.3433
4、在Rt△ABC中,∠C=90°,若tanA=
A、
43,则sinA=( )
35 B、
34 C、
53 D、
5、如图2,CD是平面镜,光线从A点射出,经CD上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为( )
A、
B 图1
C
12113 B、
311 C
锐角三角函数测试
锐角三角函数 单元测试
1.cos60 的值等于( )
A.
21
B.
22
C.
2
D.1
2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )
1
A
B. C
D.4
4
3.已知 为锐角,且sin( 10 )
3,则等于( )
2
A.50 B.60 C.70 D.80
4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )
A.msin40 B.mcos40
C.mtan40
D.
m
tan40
5.在Rt△ABC中, C 90
,BC
,AC A ( )
A.90 B.60 C.45 D.30
6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )
A.250m. B. 250.3 m. C.500.33 m. D.3 m.
7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )
锐角三角函数测试
锐角三角函数 单元测试
1.cos60 的值等于( )
A.
21
B.
22
C.
2
D.1
2.在Rt△ABC 中, ∠C=90 ,AB=4,AC=1,则tanA的值是( )
1
A
B. C
D.4
4
3.已知 为锐角,且sin( 10 )
3,则等于( )
2
A.50 B.60 C.70 D.80
4.已知直角三角形ABC中,斜边AB的长为m, B 40,则直角边BC的长是( )
A.msin40 B.mcos40
C.mtan40
D.
m
tan40
5.在Rt△ABC中, C 90
,BC
,AC A ( )
A.90 B.60 C.45 D.30
6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)位于她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( )
A.250m. B. 250.3 m. C.500.33 m. D.3 m.
7.直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE的值是( )
锐角三角函数(培优)
知识要点
1、 锐角三角函数定义
斜边的对边αα∠=sin 斜边的邻边αα∠=cos
的邻边的对边ααα∠∠=tan 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300、450、600、的记忆规律:
3、 角度变化与锐角三角函数的关系
当锐角α在00∽900之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。
4、 同角三角函数之间有哪些关系式
平方关系:sin 2A +cos 2A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tanB =1;
5、 互为余角的三角函数有哪些关系式
Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900-A )=ctan A ;
一、选择题
1.在Rt △ABC 中,∠C =900,∠A =∠B ,则sinA 的值是( ).A .21 B .22 C .2
3 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A .21 B .3
3 C .1 D .3 3.在Rt △ABC 中,如果各边的长度
1.1.1锐角三角函数
甘州区金安苑学校九年级数学(下)导学案 九年级数学备课组
§1.1.1锐角三角函数
主备人:杨天学 审核人:阮嘉东 学科组审核: 教导处审核: 【教学目标】
1.经历探索直角三角形中边的比值和角大小关系的过程;理解正切三角函数的意义和与现实生活的联系.
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算. 【教学重点】
1.从现实情境中探索直角三角形的边角关系.
2.理解正切、倾斜程度、坡度的数学意义,并能进行简单的计算. 【教学难点】
理解正切的意义,并用它来表示两边的比. 【教学过程】 一、自主预习
1.用多媒体演示如下内容:
梯子是我们日常生活中常见的物体.我们经常听人们说这个梯子放的“陡”,那个梯子放的“平缓”,人们是如何判断的?
(1)甲组中EF和AB哪组梯子比较陡,乙图中AB和EF哪组梯子较陡.
乙组 (2)如图,梯子AB和EF哪个更陡?你是怎样判断的?
甲组
二、自主探究,合作交流
1.(1)如图:图中的三角形均为直角三角形,这些
人教版九年级下册数学 28.1锐角三角函数 同步测试
28.1锐角三角函数同步测试
一.选择题
1.计算sin230°+cos260°的结果为()
A.B.C.1D.
2.在Rt△ABC中,∠C=90°,cos A=,则sin A=()
A.B.C.D.
3.在Rt△ABC中,锐角A的对边和斜边同时扩大100倍,sin A的值()A.扩大100倍B.缩小C.不变D.不能确定
4.如图,在Rt△ABC中,∠C=90°,AB=4,AC=3,则cos B==()
A.B.C.D.
5.下列式子正确的是()
A.cos60°=B.cos60°+tan45°=1
C.tan60°﹣=0D.sin230°+cos230°=
6.规定:sin(﹣x)=﹣sin x,cos(﹣x)=cos x,cos(x+y)=cos x cos y﹣sin x sin y,给出以下四个结论:
(1)sin(﹣30°)=﹣;
(2)cos2x=cos2x﹣sin2x;
(3)cos(x﹣y)=cos x cos y+sin x sin y;
(4)cos15°=.
其中正确的结论的个数为()
A.1个B.2个C.3个D.4个
7.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()
A.B.C.D.
8.若角α,β都是锐角,以下
九年级数学锐角三角函数测试题
数学:第28章 锐角三角函数测试题B(人教新课标九年级下)
一、 选择题(每小题3分,共30分)
1、在Rt△ABC中,∠C=90°,CD⊥AB于点D,已知AC=5,BC=2,那么sin∠ACD=( )
5323A、 B、 C、
255 D、
52
2、如图1,某飞机于空中A处探测到地平面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为( )
A、1200m B、2400m C、4003m D、12003m 3、(08襄樊市)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为( ) A.
12 B.
22 C.32 D.3433
4、在Rt△ABC中,∠C=90°,若tanA=
A、
43,则sinA=( )
35 B、
34 C、
53 D、
5、如图2,CD是平面镜,光线从A点射出,经CD上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=11,则tanα的值为( )
A、
B 图1
C
12113 B、
311 C
锐角三角函数基础题
锐角三角函数基础题
一、选择题(共12小题) 1.(2014 兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于( )
2.(2014 随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为( )
4.(2014 广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=( )
5.(2014
湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是( )
7.(2014 巴中)在Rt△ABC中,∠C=90°,sinA=
9.(2014 义乌市)如图,点A(t,3)在第一象限,
OA与x轴所夹的锐角为α,tanα=,则t的值是( )
2
,则tanB的值为( )
10.(2014 凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1
:
,坝高BC=10m,则坡面AB的长度是(
二、填空题(共12小题)(除非特别说明,请填准确值) 13.(2014 新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32
- 九年级上册数学锐角三角函数视频讲解
- 九年级上册数学锐角三角函数思维导图
- 九年级上册数学锐角三角函数视频
- 九年级上册数学锐角三角函数第二节
- 九年级上册数学锐角三角函数教学视频
- 九年级上册数学锐角三角函数沪科版第三课时
- 九年级上册数学锐角三角函数正弦余弦
- 九年级上册数学锐角三角函数正切
- 九年级上册数学锐角三角函数计算题
- 九年级上册数学锐角三角函数的知识点
- 九年级上册数学书人教版电子书
- 九年级上册数学北师大版
- 九年级上册数学教学视频全集免费
- 九年级上册数学课本
- 九年级上册数学人教版
- 九年级上册数学书人教版电子书答案
- 九年级上册数学人教版电子书免费
- 九年级上册数学北师大版课本答案
- 九年级上册数学北师大版电子书
- 九年级上册数学一元二次方程练习题