动点问题初二方法
“动点问题初二方法”相关的资料有哪些?“动点问题初二方法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“动点问题初二方法”相关范文大全或资料大全,欢迎大家分享。
初二数学动点问题 初二数学动点问题分析 初二数学动点问题总结
深本数学,就是深入本质学数学,是一项全新优秀的教育科研成果,是一套一通百通的数学学习方法。该方法通过深入数学的本质,找到中小学数学所有章节的知识规律和解题规律,其中包括四个大规律,十五个中规律和三十五个小规律。掌握这些规律,学生可以举一反三、一通百通,从而提高学习兴趣,提升思维能力,轻松学好数学。
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改
初二数学动点问题
动点问题
八年级上册
1. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达点D时,另一点也随之停止运动,设运动时间为t(s),t为何值时,四边形APQD也为矩形?
2、如图,在梯形ABCD
中,AD∥BC,AD 3,DC 5,AB B 45 .动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长.
(2)当MN∥AB时,求t的值.
C
动点问题
3如图,梯形ABCD中AD//BC, ∠B=90 °AB=14cm,AD=15cm,BC=21cm,点M从A点开始,沿AD边向D运动,速度为1cm/s,点N从点C开始沿CB边向点B运动,速度为2cm/s,设四边形MNCD的面积为S。
(1)写出面积S与时间t之间的函数关系式。
(2)t为何值时,四边形MNCD是平行四边形?
(3)t为何值时,四边形MNCD是等腰梯形?
A
B
4. 梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,A
二、动点问题题型方法归纳
动点问题 题型方法归纳
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)
动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、
相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点
1、(2009年齐齐哈尔市)直线y??
C A A E O C F B
A D C F O E B
O B 3x?6与坐标轴分别交4
图图图
2、(2009年衡阳市)
如图,AB是⊙O的直径,弦BC=2cm, ∠ABC=60o.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0?t?2),连结EF,当t为何值时,△BEF为直角三角形.
注意:第(3)问按直角位置分类讨论
3、(2009
重庆綦江)如图,已知抛物线
于A、B两点,动点P、Q同
初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题归类复习(含例题、练习及答案)
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 数形结合思想 转化思想
本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。 一、等腰三角形类:因动点产生的等腰三角形问题 例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图
思路点拨
1.第(2)题BP=2分两种情况.
2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系. 3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ. 解答:(1)在
初二动点问题解析与专题训练(详尽) - 图文
初二动点问题解析
1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形?
分析:
(1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC.
所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.
解答:
解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6
即当t=6时,四边形PQCD平行为四边形.
(2) 过D作DE⊥BC于E
则四边形ABED为矩形
∴BE=AD=24cm∴EC=BC-BE=2cm∵四边形PQCD为等腰梯形∴QC-PD=2CE
即3t-(24-t)=4解得:t=7(s)即当t=7(s)时
初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题归类复习(含例题、练习及答案)
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 数形结合思想 转化思想
本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。 一、等腰三角形类:因动点产生的等腰三角形问题 例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图
思路点拨
1.第(2)题BP=2分两种情况.
2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系. 3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ. 解答:(1)在
函数动点问题
题型:选择题 难度:中等 详细信息 如图①,在矩形ABCD中,点P从点B出发沿BC、CD、DA运动至点A停止,设P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图②,则梯形ORMN的面积为( ) A.65 B.60 C.40 D.20 根据图②中y与x的变化关系得出梯形的高,以及梯形的上底和下底,进而求出面积即可. 【解析】 设P运动的路程为x,△ABP的面积为y, 当x=3时,y取到最大,当x=8时,y开始减小,则CD=5, 故AB=5,BC=3, 则S△ABC=×3×5=即R,M的纵坐标为:∵EO=3,则TN=3, ∴NO=11,RM=8-3=5, ∴梯形ORMN的面积为:(5+11)×故选:B. 题型:填空题 难度:中等 详细信息 =60. , , 已知动点P以每秒2cm的速度沿图甲的边框按从B→C→D→E→F→A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图乙,若AB=6cm,试回答下列问题: (1)图甲中BC的长度是 . (2)图乙中A所表示的数是 . (3)图甲中的图形面积是 . (4)图乙中B所表示的数是 . 题型:解答题 难度:困难 详细信息
圆的动点问题
以圆为载体的动点问题
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质
1.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,联结OD. (1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.
2.如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒. (1)请用含t的代数式分别表示出点C与点P的坐标;
1
(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B
2
的左侧),连接PA、PB.
二次函数动点问题(含答案)
二次函数的动态问题(动点)
1.如图,已知抛物线C1与坐标轴的交点依次是A(?4,0),B(?2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形
MDNA的面积为S.若点A,点D同时以每秒1个单位
的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
[解] (1)点A(?40,),点B(?20,),点E(08,)关于原点的对称点分别为D(4,0),C(2,0),
F(0,?8).
设抛物线C2的解析式是
y?ax2?bx?c(a?0),
?16a?4b?c?0,?则?4a?2b?c?0, ?c??8.?,?a??1?解得?b?6,
?c??8.?所以所求抛物线的解析式是y??x?6x?8.
中考数学压轴题(二)动点问题1
中考压轴题(二)
一、三角形边上动点
1、(2009年齐齐哈尔市)直线y??34x?6与坐标轴分别交于A、B两点,动点P、Q同时
从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S?485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第
四个顶点M的坐标.
P O Q A x B y 提示:第(2)问按点P到拐点B所有时间分段分类;
第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)
C C C
F F
E A B A A D O E B O B O
图(1) 图(2)
如图,AB是⊙O的直径,弦BC=2cm, ∠ABC=60o.
(1)求⊙O的直径;
图(3)
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD