一元二次方程的基本概念例题

“一元二次方程的基本概念例题”相关的资料有哪些?“一元二次方程的基本概念例题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“一元二次方程的基本概念例题”相关范文大全或资料大全,欢迎大家分享。

一元二次方程基本概念

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程基本概念

1、基本概念:

方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程(等式),叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

2、解方程常用方法:

(1). 直接开平方法:

由应用直接开平方法解形如x2=p(p≥0),那么x=转化为应用直接开平方法解

形如(mx+n)2=p(p≥0),那么mx+n=

(2).配方法:

左边不含有x的完全平方形式、左边是非负数的一元二次方程可化为左边是含有x的完全平方形式、右边是非负数、可以直接降次解方程得方程。

转化过程如下:

x2-64x+768=0

移项→x2-64x=-768

两边加(

64

2

)2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024

左边写成平方形式→(x-32)2=?256 ?

降次→x-32=±16

即x-32=16或x-32=-16

解一次方程→x1=48,x2=16

可以验证:x1=48,x2=

一元二次方程经典例题

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程应用题经典题型汇总

一 几何图形转换问题

例1、(2013?昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为( )

2

A. 100×80﹣100x﹣80x=7644 C. (100﹣x)(80﹣x)=7644

考由实际问题抽象出一元二次方程. 点: 专几何图形问题. 题: 分把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方析: 形,根据长方形的面积公式列方程. 解解:设道路的宽应为x米,由题意有 答: (100﹣x)(80﹣x)=7644, 故选C. 点此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移评: 到矩形地面的最上边和最左边是做本题的关键. B. (100﹣x)(80﹣x)+x=7644 D. 100x+80x=356 2练习: 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)

(1)设计方案1(如图2)花园是两个互相垂直且宽度相等的矩形. (2)设计方案2(如图3)花园

一元二次方程的概念说课稿

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

一元二次方程的概念说课稿

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

一元二次方程的概念说课稿

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程的概念说课稿

一、教材分析: 1、教材的地位和作用

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它高元方程、一元二次不等式、二次函数等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归

纳出一元二次方程的概念。

2、 教学目标

根据大纲的要求、本节教材的内容和学生的好奇心、求知欲及已有的知识经验,本节课的三维目标主要体

现在:

知识与能力目标: 要求学生会根据具体问题列出一元二次方程,体会方程的模型思想,培养学生归纳、分

析的能力。

过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学

生自己抽象出一元二次方程的概念 。

情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培

养用数学的意识。 3、 教学重点与难点

要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 。所

一元二次方程教案

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

学大教育个性化辅导教案

等于 0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. (3)配方法: 例 3

x2 6 x 4 0

解:x 2 6 x 4 x 2 6 x 32 4 32 ( x 3) 2 5 x 3 5 x1 5 3, x2 5 3.就是把一元二次方程转化为可以直接直接开平方的方法。 教师提问三:那同学们又能说说步骤吗? 用配方法解一元二次方程

ax 2 bx c 0 a 0

的一般步骤是: ①化二次项系数为 1, 即方程两边同时除以二次

项系数;②移项,使方程左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数一半的 平方;④化原方程为 ( x m) n 的形式;⑤如果 n 0 ,就可以用直接开平方求出方程的解,如果 n<0,则原方2

程无解. (4)公式法:把一元二次方程化成一般形式,然后公式计算。 一元二次方程 ax bx c 0(a 0) 的求根公式是:2

x

b b 2 4ac 2 (b 4ac 0). 2a

例4 解:

x2 x

一元二次方程的解法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程的解法 一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x

一元二次方程复习

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

用于期末复习

杨家中学2010-2011年度九年级上之一元二次方程复习

一、选择题 1.(2010江苏苏州)下列四个说法中,正确的是 A

.一元二次方程x2 4x 5

2有实数根;

B

.一元二次方程x2 4x 5 2 C

.一元二次方程x2 4x 5 3

有实数根;

D.一元二次方程x2+4x+5=a(a≥1)有实数根.

3.(2010安徽芜湖)关于x的方程(a -5)x2-4x-1=0有实数根,则a满足( )

A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5 4.

5.(10湖南益阳)一元二次方程ax2

bx c 0(a 0)有两个不相等...

的实数根,则b2

4ac满足的条件是

A.b2 4ac=0 B.b2 4ac>0 C.b2 4ac<0 D.b2 4ac≥0

6.(2010山东日照)如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是

(A)-3,2 (B)3,-2 (C)2,-3 (D)2,3 7.(2010四川眉山)已知方程x2 5x 2 0的两个解分别为x1、x

一元二次方程的解法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

一元二次方程的解法 一元二次方程的解法

一、知识要点:

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基

础,应引起同学们的重视。

一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2

的整式方程。

解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解

法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

二、方法、例题精讲:

1、直接开平方法:

直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的

方程,其解为x=m± .

例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11

分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以

此方程也可用直接开平方法解。

(1)解:(3x+1)2=7×

∴(3x+1)2=5

∴3x+1=±(注意不要丢解)

∴x=

∴原方程的解为x1=,x2=

(2)解: 9x2-24x

07一元二次方程的概念与解法

标签:文库时间:2025-01-19
【bwwdw.com - 博文网】

代数综合检测

一元二次方程的概念与解法

【知识要点】

1. 一元二次方程的概念

只含有一个未知数,且未知数的最高次数是2的整式方程,叫做一元二次方程。

2.一元二次方程的一般形式

ax2 bx c 0(a 0)是一元二次方程的一般形式.

3.一元二次方程的解法主要有直接开方法、配方法、公式法、因式分解法.

4.解一元二次方程,直接开平方法是一种特殊方法,配方法与求根公式法是一般方法,对于任何一元二次方程都可使用。解题的关键是要根据方程系数的特点及方程的不同形式,选择适当的方法,使解法简捷.

【经典例题】

例1.判断下列方程是不是一元二次方程:

(1)x2 y 1 (2)42 12x x 3 xy 1 0 (3) (4)2x 1

(5) a 1 x2 k 1(a 1、k是常数) (6) x 1 x2 x 1 x2 2x 1 x 1 例2.用直接开方法解下列方程:

(1)2x 8 0

例3.用配方法解下列方程:

(1)x 6x 16 0

例4 用公式法解下列方程:

(1)2x 3x 1 0

例5 用因式分解法解下列方程:

(1)2x 5x 2 0

2222 (2)(x 5)2 36 0 (3)(x 4