opencv 人脸检测
“opencv 人脸检测”相关的资料有哪些?“opencv 人脸检测”相关的范文有哪些?怎么写?下面是小编为您精心整理的“opencv 人脸检测”相关范文大全或资料大全,欢迎大家分享。
基于OpenCV的人脸检测 - 毕设论文 - 图文
基于OpenCV的人脸检测
摘 要
人脸检测是指使用计算机在动态的场景或复杂的背景中检测出人脸的存在,并确定所有人脸的位置与大小的过程。人脸检测技术不仅是人脸识别、表情识别、人脸跟踪等技术的重要前提条件,同时在模式识别、人机交互、智能监控、视频检索等领域也引起了广泛的重视。
本论文简单介绍了国内外人脸识别技术研究及应用的发展现状及其难点分析。在第二章中介绍了包括基于知识的方法、特征不变量方法、模板匹配方法、基于外观的方法四类检测方法;在第三章简单介绍了四种经典的检测方法,包括特征脸、神经网络、隐马尔可夫模型方法、支持向量机。
在第四章重点分析了AdaBoost算法中集成机器学习的一个重要机制:多个弱分类器集成的方法,机器学习中的弱学习到强学习,集成的关键是投票,最简单的方法是“绝对多数”的方法。在第五章详细分析了AdaBoost算法检测速度快、可以检测任意尺度的图像的特点。
在这个理论基础上,本文中人脸算法的研究基于OpenCV开源代码,在OpenCV开源代码中设计了一些基础的数据类型和一些帮助数据类型。由于OpenCV的源代码完全开放,本文的研究中利用这套代码在PC上以Visual C++集成开发环境做平台搭建了一个基于OpenCV的人脸
基于OpenCV的人脸检测 - 毕设论文 - 图文
基于OpenCV的人脸检测
摘 要
人脸检测是指使用计算机在动态的场景或复杂的背景中检测出人脸的存在,并确定所有人脸的位置与大小的过程。人脸检测技术不仅是人脸识别、表情识别、人脸跟踪等技术的重要前提条件,同时在模式识别、人机交互、智能监控、视频检索等领域也引起了广泛的重视。
本论文简单介绍了国内外人脸识别技术研究及应用的发展现状及其难点分析。在第二章中介绍了包括基于知识的方法、特征不变量方法、模板匹配方法、基于外观的方法四类检测方法;在第三章简单介绍了四种经典的检测方法,包括特征脸、神经网络、隐马尔可夫模型方法、支持向量机。
在第四章重点分析了AdaBoost算法中集成机器学习的一个重要机制:多个弱分类器集成的方法,机器学习中的弱学习到强学习,集成的关键是投票,最简单的方法是“绝对多数”的方法。在第五章详细分析了AdaBoost算法检测速度快、可以检测任意尺度的图像的特点。
在这个理论基础上,本文中人脸算法的研究基于OpenCV开源代码,在OpenCV开源代码中设计了一些基础的数据类型和一些帮助数据类型。由于OpenCV的源代码完全开放,本文的研究中利用这套代码在PC上以Visual C++集成开发环境做平台搭建了一个基于OpenCV的人脸
基于OpenCV的人脸检测 - 毕设论文 - 图文
基于OpenCV的人脸检测
摘 要
人脸检测是指使用计算机在动态的场景或复杂的背景中检测出人脸的存在,并确定所有人脸的位置与大小的过程。人脸检测技术不仅是人脸识别、表情识别、人脸跟踪等技术的重要前提条件,同时在模式识别、人机交互、智能监控、视频检索等领域也引起了广泛的重视。
本论文简单介绍了国内外人脸识别技术研究及应用的发展现状及其难点分析。在第二章中介绍了包括基于知识的方法、特征不变量方法、模板匹配方法、基于外观的方法四类检测方法;在第三章简单介绍了四种经典的检测方法,包括特征脸、神经网络、隐马尔可夫模型方法、支持向量机。
在第四章重点分析了AdaBoost算法中集成机器学习的一个重要机制:多个弱分类器集成的方法,机器学习中的弱学习到强学习,集成的关键是投票,最简单的方法是“绝对多数”的方法。在第五章详细分析了AdaBoost算法检测速度快、可以检测任意尺度的图像的特点。
在这个理论基础上,本文中人脸算法的研究基于OpenCV开源代码,在OpenCV开源代码中设计了一些基础的数据类型和一些帮助数据类型。由于OpenCV的源代码完全开放,本文的研究中利用这套代码在PC上以Visual C++集成开发环境做平台搭建了一个基于OpenCV的人脸
基于OpenCV的人脸检测 毕设论文 - 图文
基于OpenCV的人脸检测
摘 要
人脸检测是指使用计算机在动态的场景或复杂的背景中检测出人脸的存在,并确定所有人脸的位置与大小的过程。人脸检测技术不仅是人脸识别、表情识别、人脸跟踪等技术的重要前提条件,同时在模式识别、人机交互、智能监控、视频检索等领域也引起了广泛的重视。
本论文简单介绍了国内外人脸识别技术研究及应用的发展现状及其难点分析。在第二章中介绍了包括基于知识的方法、特征不变量方法、模板匹配方法、基于外观的方法四类检测方法;在第三章简单介绍了四种经典的检测方法,包括特征脸、神经网络、隐马尔可夫模型方法、支持向量机。
在第四章重点分析了AdaBoost算法中集成机器学习的一个重要机制:多个弱分类器集成的方法,机器学习中的弱学习到强学习,集成的关键是投票,最简单的方法是“绝对多数”的方法。在第五章详细分析了AdaBoost算法检测速度快、可以检测任意尺度的图像的特点。
在这个理论基础上,本文中人脸算法的研究基于OpenCV开源代码,在OpenCV开源代码中设计了一些基础的数据类型和一些帮助数据类型。由于OpenCV的源代码完全开放,本文的研究中利用这套代码在PC上以Visual C++集成开发环境做平台搭建了一个基于OpenCV的人脸
基于OpenCV的人脸检测 - 毕设论文 - 图文
基于OpenCV的人脸检测
摘 要
人脸检测是指使用计算机在动态的场景或复杂的背景中检测出人脸的存在,并确定所有人脸的位置与大小的过程。人脸检测技术不仅是人脸识别、表情识别、人脸跟踪等技术的重要前提条件,同时在模式识别、人机交互、智能监控、视频检索等领域也引起了广泛的重视。
本论文简单介绍了国内外人脸识别技术研究及应用的发展现状及其难点分析。在第二章中介绍了包括基于知识的方法、特征不变量方法、模板匹配方法、基于外观的方法四类检测方法;在第三章简单介绍了四种经典的检测方法,包括特征脸、神经网络、隐马尔可夫模型方法、支持向量机。
在第四章重点分析了AdaBoost算法中集成机器学习的一个重要机制:多个弱分类器集成的方法,机器学习中的弱学习到强学习,集成的关键是投票,最简单的方法是“绝对多数”的方法。在第五章详细分析了AdaBoost算法检测速度快、可以检测任意尺度的图像的特点。
在这个理论基础上,本文中人脸算法的研究基于OpenCV开源代码,在OpenCV开源代码中设计了一些基础的数据类型和一些帮助数据类型。由于OpenCV的源代码完全开放,本文的研究中利用这套代码在PC上以Visual C++集成开发环境做平台搭建了一个基于OpenCV的人脸
OpenCV人脸识别 - 图文
摘 要
人脸检测主要是基于计算机识别的一项数字化技术,用以准确获取人的脸部大小和位置信息,在进行人脸检测时,突出主要的脸部特征,淡化次要的环境、衣着等因素。对于某些情况下,人脸检测也可以计算出人脸,如眼睛,鼻子和嘴等精确的微妙特征。由于在安全检测系统,医学,档案管理,视频会议和人机交互等领域人脸检测系统都有光明的应用前景,因此人脸检测逐渐成为了两个跨学科领域研究的热门话题:人工智能和当前模式识别。本文基于OpenCV视觉库具体的设计并开发了对数字图像中的人脸检测的程序,所采用的人脸检测的原理主要是分类器训练模式(Adaboost算法)提取Haar特征的方法。它在整个软件极其重要的作用,图像中人脸的准确定位和识别都受图像处理好坏的直接影响。本次所设计的软件在图像处理部分所采用的方法是基于Adaboost算法进行Haar特征的提取,在此之上加以通过积分图方法来获取完整的级联分类器结构,进行人脸检测时,OpenCV级联分类器通过Adaboost人脸检测算法进行训练,此后采用不同情况下的实验样本完成精确定位以及检测试验。经过代码的设计和调试,在最后的测试中针对数字图像进行的人脸检测和定位达到了较好的效果,提高了定位和识别的正确率。
关键词:人脸检测
基于opencv的行人检测和人脸检测代码(摄像头,视频,图像)
//摄像头的
#include "cv.h"
#include"highgui.h"
#include"stdio.h"
#ifdef _EiC
#define WIN32
#endif
static CvMemStorage* storage = 0;//设存储器,返回空间头指针
static CvHaarClassifierCascade* cascade = 0;
void detect_and_draw( IplImage* image );
const char* cascade_name =
"haarcascade_frontalface_alt.xml";//人脸检测分类器
int main( int argc, char** argv )
{
CvCapture* capture = 0;
IplImage *frame, *frame_copy = 0;
int optlen = strlen("--cascade=");
const char* input_name;
if( argc > 1 && strncmp( argv[1], "--cascade=", optlen ) == 0 )
{
cascade_name = argv[1] + optlen
基于OpenCV的车辆检测论文 - 图文
摘 要
智能交通系统(ITS)是目前世界交通运输领域正在研究和广泛关注的课题。 近年来,智能交通系统的应用给交通运输业带来了巨大的经济效益,对于道路设 计、流量监控和高速公路管理起到了越来越重要的作用。论文所研究的视频车辆 检测技术在ITS中占有很重要的地位,与传统的车辆检测方法相比,视频车辆检测技术不仅具有安装维护便捷且费用较低、可监视范围广等诸多优点,同时可对道路现场图像进行智能化分析和处理。
本文利用OpenCV中对运动物体检测的数据结构、函数库,建立了一个视频车辆分析系统,用于道路上车辆的检测。检测过程是首先对视频图像进行预处理,比如二值化、去噪等;然后进行背景的提取及更新,由于背景差分法是通过当前帧和背景帧相减来提取运动目标,所以实时的背景更新尤为重要,本文采用多帧求平均的方法来更新背景,避免了光照条件和气候环境等带来的不利影响;最后利用背景差分法检测出运动车辆。经过实验验证,该方法可以较准确地检测出车辆目标,检测的成功率可达到90%以上。
关键字: 视频处理 车辆检测 OpenCV
ABSTRACT
Intelligent Transportation Systems (ITS) is the subj
基于OpenCV的车辆检测论文 - 图文
摘 要
智能交通系统(ITS)是目前世界交通运输领域正在研究和广泛关注的课题。 近年来,智能交通系统的应用给交通运输业带来了巨大的经济效益,对于道路设 计、流量监控和高速公路管理起到了越来越重要的作用。论文所研究的视频车辆 检测技术在ITS中占有很重要的地位,与传统的车辆检测方法相比,视频车辆检测技术不仅具有安装维护便捷且费用较低、可监视范围广等诸多优点,同时可对道路现场图像进行智能化分析和处理。
本文利用OpenCV中对运动物体检测的数据结构、函数库,建立了一个视频车辆分析系统,用于道路上车辆的检测。检测过程是首先对视频图像进行预处理,比如二值化、去噪等;然后进行背景的提取及更新,由于背景差分法是通过当前帧和背景帧相减来提取运动目标,所以实时的背景更新尤为重要,本文采用多帧求平均的方法来更新背景,避免了光照条件和气候环境等带来的不利影响;最后利用背景差分法检测出运动车辆。经过实验验证,该方法可以较准确地检测出车辆目标,检测的成功率可达到90%以上。
关键字: 视频处理 车辆检测 OpenCV
ABSTRACT
Intelligent Transportation Systems (ITS) is the subj
基于opencv目标跟踪与检测课程设计
课程设计Ⅰ设计报告
题 目:基于Opencv运动目标跟踪与检测 学 号: 姓 名: 学 院: 信息学院 专业班级: 计算机软件2班 指导教师: 黄文培 设计时间: 2012.9.3
指导老师评语:
评定成绩: 签名: 日期:
摘 要
本文先介绍一种开放源代码的计算机视觉类库OpenCV,主要阐述该类库的特点及其结构,然后介绍本人学习opencv一些基本功能的实现以及结果。最后通过“检测一个视频中的运动物体”这一实例探讨了使用OpenCV进行编程的方法。 关键词 图像处理 目标检测
OpenCV IplImage VC++
目 录
1 概述.............................................................. 4