反复加减法解二元一次方程组
“反复加减法解二元一次方程组”相关的资料有哪些?“反复加减法解二元一次方程组”相关的范文有哪些?怎么写?下面是小编为您精心整理的“反复加减法解二元一次方程组”相关范文大全或资料大全,欢迎大家分享。
加减法解二元一次方程组
《用加减法解二元一次方程组》第一课时导学案
王景强
一看下面一个实际问题:
若学生甲和学生乙的农场金币值相同,学生丙和学生丁的农场金币至相同,
问题一: 若学生甲和学生丙的农场金币值相加与学生乙和学生丁的农场金币值相加之和相等
吗?
问题二: 若学生甲和学生丙的农场金币值相减与学生乙和学生丁的农场金币值相减之差相等
吗?
答案是肯定的,都相等。
这就是我们今后要学习的一条重要性质。
等量公理:
等量加等量和相等。
等量减等量差相等。
二运用这一性质,我们来研究如何解方程组;
???=-=+3
2123y x y x 当然了,我们可以用代入法解他了 ,然而,可以发现 ,两个方程中未知数Y 的系数分别为相反数,因此它们的和为零。所以可以这样解。
???=-=+3
2123y x y x 方程1加方程2
4X=4
X=1
解得Y=-1
即???-==1
1y x 是方程组的解。 例一,解方程组 ???=+=+1
3532y x y x 仔细观察,开动脑筋,你一定会解的。
过程略
三 由上面的例子可知,当二元一次方程组中的一个未知数的系数互为相反数或相等时,可以把方程的两边相加或相减来消去未知数得到一元一次方程组,进
而求得方程组的解,叫加减消元法。
练习,解方程组
1 ???=+=-125
用加减法解二元一次方程组
用加减法解二元一次方程组教学设计
一、教材分析
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.
二 ,教学目标
1、知识与技能目标:使学生掌握用加减法解二元一次方程组的步骤, 能运用加减法解二元一次方程组, 理解加减消元法的基本思想,体会化未知为已知的化归思想方法
2、能力培养:根据方程的不同特点,进一步体会解二元一次方程组的基本思想——消元;培养学生分析问题、解决问题的能力, 训练学生的运算技巧。 3、情感态度与价值观:通过交流学习获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。
三、学法引导
观察各未知数前面系数的特征,只要将相同未知数前的系数化为绝对值相等的值后就可以利用加减消元法进行消元,同时在运算过程中注意归纳解题的技巧和解题的方法
二元一次方程组解法(二) - 加减法(基础)
金 榜 题 名 找 勤 径 教 育
;;.ll; 勤径教育一对一个性化教案
学生人数 教 师 课 题 教学内容 教学宗旨 赵卉 刘霞 年 级 初一 课 时 授课时段 2 8:00——10:10 授课日期 2014.52.5 二元一次方程组解法(二)---加减法 1. 掌握加减消元法解二元一次方程组的方法; 2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组; 3.会对一些特殊的方程组进行特殊的求解 独物之教风,以尽匹夫之责。 新课程讲义 二元一次方程组解法(二)---加减法(基础)知识讲解 【要点梳理】 要点一、加减消元法解二元一次方程组 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 要点诠释:用加减消元法解二元一次方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等
加减消元法解二元一次方程组
新思维补习社个性化教案
第 39次课 用加减消元法解二元一次方程组 教学 会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。 目标 重点 让学生理解针对不同类型的方程组采用不同类型的发放来解题。 难点 作业 让学生熟练的掌握用相加或者相减消元法来解方程组。 课前检查作业完成情况:优□ 良□ 中□ 差□ 建议_____________________________ 复习上次作文写作方法以及范文的背诵。 1、思考在求解: ?6x?7y?5??6x?7y?19未知数y的系数 ,若把方程(1)和方程(2)相加可得: ( )+( )= 归纳:两个二元一次方程组中,同一个未知数的系数 时,把这两个方程的两边分别 ,就能消去这个未知数,得到一个 方程,这种方法就叫做加减消元法。 2、用加减消元法解下列方程组 ?x?y?1 ①
二元一次方程组
二元一次方程组及其应用
◆【课前热身】
1.若2xm+n-1-3ym-n-3+5=0是关于x,y的二元一次方程,则m=_____,n=_____. 2.在式子3m+5n-k中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.
[来源:学§科§网]
3.若方程组??ax?y?0?x?1的解是?,则a+b=_______.
?2x?by?6?y??2?2x?3?5t,则x和y之间应满足的关系式是_______.
3y?2t?x?4.已知x,y,t满足方程组??2x?y?b?x?15.若方程组?的解是?,那么│a-b│=_____.
x?by?ay?0??【参考答案】 1.3;-1 2.-7 3.8 4.15y-x=6 5.1
◆【考点聚焦】
了解二元一次方程组及其解法,并灵活运用代入法、加减法解二元一次方程组.
重点:掌握消元思想,熟练地解二元一次方程组.会用二元一次方程组解决一些简单的实际问题.
难点:是图象法解二元一次方程组,数形结合思想. ◆【备考兵法】 思想方法:
①消元思想--加减和代入两种消元方法
②数学建模思想--列二元一次方程组解决实际问题的方法 ③数形结合思想--图象法解二元一次方
解二元一次方程组(二)教学设计
2.二元一次方程组的解法(二)
一、学生起点分析
在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组等基本概念,具备了进一步学习二元一次方程组的解法的基本能力.
二、教学任务分析
《二元一次方程组的解法》是义务教育课程标准北师大版实验教科书 八年级(上)第七章《二元一次方程组》的第二节(两课时).第1课时,让学生学习了二元一次方程组的解法——代入消元法.本节课为第2课时,学习二元一次方程组的另一解法——加减消元法.
加减消元法也是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.
三、教学目标分析
1.教学目标:
(1.)会用加减消元法解二元一次方程组.
(2.)让学生在自主探索和合作交流中,进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.
(3.)通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.
(4.)通过学
用加减消元法解二元一次方程组同步练习
二元一次方程组
1.方程组231534
m n m n +=??+=?中,n 的系数的特别是_______,所以我们只要将两式________,
?就可以消去未知数,化成一个一元一次方程,达到消元的目的.
2.方程组532534m n m n -+=??+=?
中,m 的系数的特别是________,所以我们只要将两式________,就可以消去未知数m ,化成一个一元一次方程,进而求得方程组的解.
3.?用加减法解二元一次方程组时,??两个方程中同一个未知数的系数必须________?或_______,?即它们的绝对值______.?当未知数的系数的符号相同时,?用_______;当未知数的系数的符号相反时,用_______.?当方程组里两个方程的同一个未知数的系数成整数倍时,可以利用________性质,将方程经过简单变形,?使这个未知数的系数的绝对值________,再用加减法消元,进一步求得方程组的解.
4.方程组421721
x y x y +=??
-=?里两个方程只要两边________,就可以消去未知数________.
5.方程组3133131x y x y +=??-=-?
的两个方程只要两边_______,就可以消去未知数_______. 6
二元一次方程组定义
1.下列方程中,属于二元一次方程的是( ) A.-2a=3a+1 B.
11-x=+2 C.m-n=3a D.2x-1=y
y32.下列各对数值,是二元一次方程-x-2y=5的解是( )
?x?1,?x?1,?x??1,?x??1, A.? B.? C.? D.?
y?2,y??3y?2,y??3????3.根据题意列出方程. (1)x的2倍与y的
1的差是5; (2)长方形的长是5 cm,宽是2b cm,周长为a cm. 4(1) (2) 4.已知方程
11x-y=7,用含x的代数式表示y. 351,则y=________. 35.写出方程2x-5y=20的两个解:__________.
6.对方程x + y=5,若x=3,则y=______;若x=7,则y=________;若x=9
?x?1,?7.已知?3是关于x、y的方程-3x+4y=2a的一个解,则a=________.
y????48.方程x+3y=6中,x,y互为相反
二元一次方程组试题
1、方程组
2、已知|m﹣1|x+y3、已知方程组
|m|
2n﹣1
的解满足x+y=0,则m= . =3是二元一次方程,则m+n= .
,则2002(x+y+z)= .
4、关于x,y的方程组的解是,则|m+n|的值是 .
5、已知方程组的解满足x+y=6,则k的值为 .
6、若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于 .
7、已知x=2a+4,y=2a+3,如果用x表示y,则y= .
8、某公园“6?1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备多少钱买门票.
9、某服装店到厂家选购甲、乙两型服装,如购进甲型服装9件、乙型服装10件,需要1810元;购进甲型服装12件,乙型服装8件,需要1880元,求两型服装每件的价格.
10、一种商品有大小盒两种包装,3大盒、4小盒共装108瓶,售价510元;2
8.2 消元 - 解二元一次方程组(1)
罗村中学七年级数学导学案 序号:14
课题 8.2 消元——解二元一次方程组(1) 1、通过探索,会运用代入消元法解二元一次方程组。2、通过练习来学习和巩固这种解二元一次方程组的方法。3、体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。由此感受“划归”思想的广泛应用。 执教教师 学习 目标 审 核 备课时间 上课时间 2013-03-19 学习随笔 (教法、学法) 重难点 1.重点是用代入法解二元一次方程组。 2.难点是理解消元思想;代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。 学 案 内 容 一、学法指导(课前准备) ?x?y?61、方程组?的解是( ) x?3y??2?A、??x?1?y?0 B、 C、??x?4?y?2 D、??x??4?y??2 2、把下列方程写成用含x的式子表示y的形式:如,x+y=2,则y=2-x (1)2x-y=3 (2)3x+y-1=0 (3)3y-2x = -1 3、把下列方程写成用含y的式