二次函数知识点思维导图
“二次函数知识点思维导图”相关的资料有哪些?“二次函数知识点思维导图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二次函数知识点思维导图”相关范文大全或资料大全,欢迎大家分享。
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点
二次函数知识点
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 这里需要强调:和一1.二次函数的概念:一般地,形如y?ax?bx?c(a,c可以为零.二次函数的定义域是全体实数. 元二次方程类似,二次项系数a?0,而b,2. 二次函数y?ax?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
22b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
0? ?0,0? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最小值0. a?0 向下 y轴 x?0时,y随x的增大而减小;x?0时,y随x的增大而增大;x?0时,y有最大值0. 2. y?ax?c的性质: 上加下减。
2a的符号 a?0 开口方向 向上 顶点坐标 对称轴 性质
c? ?0,c? ?0,y轴 x?0时,y随x的增大而增大;x?0时,y随x的增大而减小;x?0时,y有最
二次函数知识点详解口诀
二次函数知识点详解
知识点一、平面直角坐标系
1,平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当a?b时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征
1、各象限内点的坐标的特征
点P(x,y)在第一象限?x?0,y?0
点P(x,y)在第二象限?x?0,y?0 点P(x,y)在第三象限?x?0,y?0 点P(x,y)在第四象限?x?0,y?0
2、坐标轴上的点的特征
点P(x,y)在x轴上?y?0,x为任意实数 点P(x,y)在y轴上?x?0,y为任意实数
点P(x,
浙教版二次函数知识点
浙教版二次函数知识点
浙教版二次函数知识点
二次函数在初中数学中占有重要位置,特别是在中考的最后一道大题,算是数学大题中的压轴题,接下来为你整理了浙教版二次函数知识点,一起来看看吧。
浙教版二次函数知识点I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁ ,0)和B(x₂,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b)/4a x₁,x₂=(-b±√b-4ac)
《二次函数》知识点总结精品
初三精品资料 付国教案
《二次函数》知识点总结
一、二次函数的概念
1、定义:一般地,如果y?ax2?bx?c(a,b,c是常数,a?0),那么y叫做x的二次函数.
2、注意点:
(1)二次函数是关于自变量x的二次式,二次项系数a必须为非零实数,即a≠0,而
b、c为任意实数。 (2)当b=c=0时,二次函数y?ax2是最简单的二次函数。
(3)二次函数y?ax2?bx?c(a,b,c是常数,a?0)自变量的取值为全体实数
(ax?bx?c为整式)
3、三种函数解析式:
(1)一般式: y=ax2+bx+c(a≠0),
2bb4ac?b2, 对称轴:直线x=? 顶点坐标:( ? )
2a2a4a(2)顶点式:y?a?x?h??k(a≠0),
2 对称轴:直线x=h 顶点坐标为(h,k )
(3)交点式:y=a(x-x1)(x-x2)(a≠0),
对称轴:直线x=
x1?x2 2 (其中x1、x2是二次函数与x
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.
物理原子物理知识点总结思维导图
物理原子物理知识点总结思维导图
【篇一:物理原子物理知识点总结思维导图】
九年物理知识归纳总结 第十一章 多彩的物质世界 一、宇宙和微观世界
宇宙→银河系→太阳系→地球
物质由分子组成;分子是保持物质原来性质的一种粒子;一般大小只有百亿分之几米(0.3-0.4nm). 物质三态的性质:
固体:分子排列紧密,粒子间有强大的作用力.固体有一定的形状和体积.
液体:分子没有固定的位置,运动比较自由,粒子间的作用力比固体的小;液体没有确定的形状,具有流动性.
气体:分子极度散乱,间距很大,并以高速向四面八方运动,粒子间作用力微弱,易被压缩,气体具有流动性.
分子由原子组成,原子由原子核和(核外)电子组成(和太阳系相似),原子核由质子和中子组成.
纳米科技:(1nm=10 m),纳米尺度:(0.1-100nm).研究的对象是一小堆分子或单个的原子、分子. 二、质量
质量:物体含有物质的多少.质量是物体本身的一种属性,它的大小与形状、状态、位置、温度等无关.物理量符号:m. 单位:kg、t、g、mg.
1t=103kg, 1kg=103g, 1g=103mg. 天平:
1、原理:杠杆原理.
2、注意事项:被测物体不要超过天平的称量;向盘中加减砝码要用镊子,
初三数学二次函数知识点总结
砺智培训学校 1 / 11
一、二次函数概念:
b,c是常数,a?0)的函数,叫做二次函数。 1.二次函数的概念:一般地,形如y?ax2?bx?c(a,c可以为零.二次函数的定义域是全体 这里需要强调:和一元二次方程类似,二次项系数a?0,而b,实数.
2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,二、二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随0? ?0,0? ?0,y轴 x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,y随a?0 向下 y轴 x的增大而增大;x?0时,y有最大值0.
2. y?ax2?c的性质: 上加下减。
a的符号 a?0 开口方向 顶点坐标 对称轴 向上 性质 x?0时,y随x的增大而增大;x?0时,y随c? ?0,c? ?0,y轴 x的增大而减小;x?0时,y有最小值c. x?0时,y随x