三角折纸教程

“三角折纸教程”相关的资料有哪些?“三角折纸教程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角折纸教程”相关范文大全或资料大全,欢迎大家分享。

三角光教程

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

人像摄影唯美布光之三角光(一)

文字:向诚 摄影:邢亚辉 资料提供:北京名人摄影化妆艺术学校

三角光的布光中,主光光线从人物斜上方射下,使人物的鼻子产生一道投影,并融入暗部,这就使人物的一边脸颊上形成一块三角形亮区,我们平时在太阳下会看到鼻子下有投影,这道投影会随着太阳的位置逐渐拉长,三角光就是这个道理,只不过要求投影不能间断。这种光效可以是人物面部产生明显的立体感,并且根据不同的人物特点可以加强或减弱光比反差。这种光影结构,荷兰著名画家伦勃朗在创作中经常运用,并成为他的绘画特色,故亦有“伦勃朗光”之称。

这种光效在刻画人物皮肤质感、表现人物形态和个性、神态方面都很好,是人像摄影中常用的用光方法。

一、前三角光

三角形亮区面基本是对着镜头方向,我们可以称之为前三角光。这样的布光可以使被摄者脸部的任意一侧呈现出三角形的阴影。它可以把被摄者的脸部一分为二,而又使脸部的两侧看上去各不相同,突出了人物面孔上的微妙之处。下面我们分别从三种不同的光质和不同的脸部角度来给大家讲解。

(一)硬光 正面

1、硬光前三角光光效 如图1 光位图1

图1

光位图1

硬光强度大、质感好,那么在前三角光中,硬光位于人物的前侧偏高的位置,可以产生高反差形式,阴影较重

三角光教程

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

人像摄影唯美布光之三角光(一)

文字:向诚 摄影:邢亚辉 资料提供:北京名人摄影化妆艺术学校

三角光的布光中,主光光线从人物斜上方射下,使人物的鼻子产生一道投影,并融入暗部,这就使人物的一边脸颊上形成一块三角形亮区,我们平时在太阳下会看到鼻子下有投影,这道投影会随着太阳的位置逐渐拉长,三角光就是这个道理,只不过要求投影不能间断。这种光效可以是人物面部产生明显的立体感,并且根据不同的人物特点可以加强或减弱光比反差。这种光影结构,荷兰著名画家伦勃朗在创作中经常运用,并成为他的绘画特色,故亦有“伦勃朗光”之称。

这种光效在刻画人物皮肤质感、表现人物形态和个性、神态方面都很好,是人像摄影中常用的用光方法。

一、前三角光

三角形亮区面基本是对着镜头方向,我们可以称之为前三角光。这样的布光可以使被摄者脸部的任意一侧呈现出三角形的阴影。它可以把被摄者的脸部一分为二,而又使脸部的两侧看上去各不相同,突出了人物面孔上的微妙之处。下面我们分别从三种不同的光质和不同的脸部角度来给大家讲解。

(一)硬光 正面

1、硬光前三角光光效 如图1 光位图1

图1

光位图1

硬光强度大、质感好,那么在前三角光中,硬光位于人物的前侧偏高的位置,可以产生高反差形式,阴影较重

铁三角 - 铝三角 - 金属钠

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

Fe

3Fe+4H2O(g)

高温 Fe3O4+4H2

Fe + 2H+ = Fe2+ + H2↑ Fe + Cu2+ == Cu + Fe2+ Fe + 2Fe3+ == 3Fe2+

Fe2+ + 2OH- == Fe(OH)2↓ 4Fe(OH)2 + O2 + 2H2O == 4 Fe(OH)3 (生成白色沉淀,迅速变成灰绿色,最后变成红褐色) 2Fe2+ + Cl2 == 2Fe3+ + 2Cl-

2Fe2+ + H2O2 + 2H+ == 2Fe3+ + 2H2O Fe3+ + 3OH- == Fe(OH)3↓

-2Fe3+ + 3CO32 + 3H2O == 2Fe(OH)3↓ + 3CO2↑(双水解) 2Fe3+ + Cu == 2Fe2+ + Cu2+ 2Fe3+ + 2I- == 2Fe2+ + I2

Fe3+ + 3SCN- == Fe(SCN)3 (红色溶液,Fe3+离子检验) Fe3+ + 3H2O Fe(OH)3(胶体) + 3H+ (氢氧化铁胶体制备)

FeO + 2H+ == Fe2+ + H2O Fe2O3 + 6H+ == Fe3+

折纸心形盒子 手工折纸图谱教程

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

折纸心形盒子 实用折纸盒手工折纸图谱教程

网上能够看到的手工折纸心形盒子有很多,这个由Natan lopez设计的折纸心盒子算是其中经典的一款。毕竟情人节的礼物总是要找到承装的盒子的,不如自己亲手制作一个心形的折纸盒子,将巧克力和折纸玫瑰花什么的都放入到其中,让自己的心从里到外都得到充分的包装,这样美好的感觉TA怎么能够拒绝呢!这个折纸心形盒子的特点在于无论是盒子盖子还是盒子体,都采用的是一种制作方法,只要纸张稍微放大一些就可以啦,以下为图示编辑内容。

折纸心形盒子

实用折纸盒手工折纸图谱教程

实用折纸盒手工折纸图谱教程

实用折纸盒手工折纸图谱教程

折纸心形盒子

折纸心形盒子

1.根据图示折纸,然后展开,制作边缘上的局部折痕。

2.折叠展开,上边的局部折痕。

3.折叠展开。

4.根据上面等分线,折叠展开。

5.重复第二步到第四步。

6.折叠,展开。

7.折叠,展开。

8.将圆点进行对折,折叠,展开。

9.折叠展开。

10.右边向后翻折。

11.圆点对折的局部折叠。

12.折叠,然后完全展开。

13.打褶。

14.左底角折叠。

15.旋转折叠。

16.折叠,展开。

17.旋转折叠。在圆圈所示的位置不需要压展平整。

18.折叠展开。

19.旋转折叠。

20.折叠,然后完全展开。

21.重复第十三步到第

三角函数、三角变换、解三角形、平面向量

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

三角函数、三角变换、解三角形、平面向量

第一讲 三角函数的图象与性质

1.任意角的三角函数

y

(1)设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=. x(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2. 正弦、余弦、正切的图象及性质 函数 性质 定义域 y=sin x R y=cos x R y=tan x π{x|x≠kπ+,k∈Z} 2图象 值域 [-1,1] 对称轴:x=kπ+对称性 π2[-1,1] 对称轴:x= R ?kπ,0?(k∈Z) 对称中心:kπ(k∈Z);对称中心: ?2?(k∈Z);对称中心:π(kπ+,0)(k∈Z) 2(kπ,0)(k∈Z) 2π 2π 单调减区间 π3π[2kπ+,2kπ+] 22π 周期 单调性 单调增区间[2kπ-ππZ) ,2kπ+](k∈Z); (k∈22单调增区间 单调增区间 ππ(kπ-,kπ+)(k∈Z) 22[2kπ-π,2kπ]( k∈Z); 奇偶性 奇 偶 奇 3. y=Asin(ωx+φ)的图象及性质

π3π

(1)五点作图法:五点的取法:设X=ωx+φ,X取0,,π,,2π时求相应的

铁三角 - 铝三角 - 金属钠

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

Fe

3Fe+4H2O(g)

高温 Fe3O4+4H2

Fe + 2H+ = Fe2+ + H2↑ Fe + Cu2+ == Cu + Fe2+ Fe + 2Fe3+ == 3Fe2+

Fe2+ + 2OH- == Fe(OH)2↓ 4Fe(OH)2 + O2 + 2H2O == 4 Fe(OH)3 (生成白色沉淀,迅速变成灰绿色,最后变成红褐色) 2Fe2+ + Cl2 == 2Fe3+ + 2Cl-

2Fe2+ + H2O2 + 2H+ == 2Fe3+ + 2H2O Fe3+ + 3OH- == Fe(OH)3↓

-2Fe3+ + 3CO32 + 3H2O == 2Fe(OH)3↓ + 3CO2↑(双水解) 2Fe3+ + Cu == 2Fe2+ + Cu2+ 2Fe3+ + 2I- == 2Fe2+ + I2

Fe3+ + 3SCN- == Fe(SCN)3 (红色溶液,Fe3+离子检验) Fe3+ + 3H2O Fe(OH)3(胶体) + 3H+ (氢氧化铁胶体制备)

FeO + 2H+ == Fe2+ + H2O Fe2O3 + 6H+ == Fe3+

铁三角 - 铝三角 - 金属钠

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

Fe

3Fe+4H2O(g)

高温 Fe3O4+4H2

Fe + 2H+ = Fe2+ + H2↑ Fe + Cu2+ == Cu + Fe2+ Fe + 2Fe3+ == 3Fe2+

Fe2+ + 2OH- == Fe(OH)2↓ 4Fe(OH)2 + O2 + 2H2O == 4 Fe(OH)3 (生成白色沉淀,迅速变成灰绿色,最后变成红褐色) 2Fe2+ + Cl2 == 2Fe3+ + 2Cl-

2Fe2+ + H2O2 + 2H+ == 2Fe3+ + 2H2O Fe3+ + 3OH- == Fe(OH)3↓

-2Fe3+ + 3CO32 + 3H2O == 2Fe(OH)3↓ + 3CO2↑(双水解) 2Fe3+ + Cu == 2Fe2+ + Cu2+ 2Fe3+ + 2I- == 2Fe2+ + I2

Fe3+ + 3SCN- == Fe(SCN)3 (红色溶液,Fe3+离子检验) Fe3+ + 3H2O Fe(OH)3(胶体) + 3H+ (氢氧化铁胶体制备)

FeO + 2H+ == Fe2+ + H2O Fe2O3 + 6H+ == Fe3+

三角向量

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

南宁二中2009届数学备课组 第二轮复习专用资料

三角函数和平面向量专题复习

一.高考考试内容及要求:

1.三角函数考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义;

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式; (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义;

(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。 2. 平面向量考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念; (2)掌握向量的加法和减法;

(3)掌握实数与向量的积,理解

三角向量

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

南宁二中2009届数学备课组 第二轮复习专用资料

三角函数和平面向量专题复习

一.高考考试内容及要求:

1.三角函数考试要求:

(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算.

(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义;掌握同角三角函数的基本关系式,掌握正弦、余弦的诱导公式,了解周期函数与最小正周期的意义;

(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式; (4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;

(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义;

(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。 2. 平面向量考试要求:

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念; (2)掌握向量的加法和减法;

(3)掌握实数与向量的积,理解

三角函数的概念和同角三角函数

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

典例分析

【例1】 ⑴在0?与360?范围内,找出与下列各角终边相同的角,并判断它们是第几象限角:

①?120?;②640?;③?950?12?.

⑵分别写出与下列各角终边相同的角的集合S, 写出S中满足不等式?360?≤?≤720?的元素?: ①80?;②?51?;③367?34?.

【例2】 ⑴把67?30'化成弧度;

3⑵把πrad化成度.

5

9【例3】 ⑴把157?30?化成弧度;⑵把πrad化成度.

5

【例4】 将下列各角化为2kπ??(0≤??2π,k?Z)的形式,并判断其所在象限.

19π; 3(2)-315°; (3)-1485°.

(1)

【例5】 下面四个命题中正确的是()

A.第一象限的角必是锐角 C.终边相同的角必相等

B.锐角必是第一象限的角

D.第二象限的角必大于第一象限的角

【例6】 把下列各角写成k?360???(0≤??360?)的形式,并指出它们所在的象限或终边位置.

⑴?135?;⑵1110?;⑶?540?.

【例7】 已知角?的终边经过点P(?3,3),则与?终边相同的角的集合是

.

2π??k?Z? A.?xx?2kπ?,3??5π??k?Z? C.?xx?kπ?,