中考二次函数题型方法总结
“中考二次函数题型方法总结”相关的资料有哪些?“中考二次函数题型方法总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“中考二次函数题型方法总结”相关范文大全或资料大全,欢迎大家分享。
二次函数知识点总结及中考题型总结
学习好资料 欢迎下载
二次函数知识点总结及中考题型,易错题总结
(一)二次函数知识点总结
一、二次函数概念:
1.二次函数的概念:一般地,形如y?ax2?bx?c(a,b,c是常数,a?0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a?0,而b,c可以为零.二次函数的定义域是全体实数. 2. 二次函数y?ax2?bx?c的结构特征:
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵
a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.
二、二次函数的基本形式
1. 二次函数基本形式:y?ax2的性质: a 的绝对值越大,抛物线的开口越小。
a的符开口方顶点坐对称性质 向 标 轴 x?0时,y随x的增大而增大;x?0
号 a?0 向上 ?0,0? y轴 时,y随x的增大而减小;x?0时,
y有最小值0. x?0时,y随x的增大而减小;x?0
a?0 向下 ?0,0? y轴 时,y随x的增大而增大;x?0时,2.
y有最大值0. y?ax2?c的性质: 上加下减。
学习好资料 欢迎下载
a的符开口方顶点坐对称性质 向 标 轴 x?0时,y随x的增
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.
二次函数知识点总结和题型总结
二次函数知识点总结和题型总结
一、二次函数概念:
2b,c是常数,a?0)的函 1.二次函数的概念:一般地,形如y?ax?bx?c(a, 数,叫做二次函数。
这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式
2y?ax?bx?c的结构特征: 2. 二次函数
⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.
b,c是常数,a是二次项系数,b是一次项系数,c是常数项. ⑵ a,例题:
例1、已知函数y=(m-1)xm2 +1+5x-3是二次函数,求m的值。
练习、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围 为 。 二、二次函数的基本形式
1. 二次函数基本形式:y?ax的性质: a 的绝对值越大,抛物线的开口越小。
a的符号 2开口方向 顶点坐标 对称轴 性质 x?0时,y随x的增大而增大;x?0时,a?0 向上 ?0,0? y轴 y随x的增大而减小;x?0时,y有最小值0. x?0时,y随x的增大而减小;x?0时,a?0 向下 ?0,0? y轴 y随x的增大而增大;x?0时,y有最大值0.
二次函数各种题型汇总
二次函数各种题型汇总
一、利用函数的对称性解题 (一)用对称比较大小
例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小
解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称轴的右侧,
由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1 (二)用对称求解析式
例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。
解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为:
x1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题
例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于( ) A.
中考压轴《二次函数》总结精华
二次函数常见压轴题型
已知y=x 2x 3
2
和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标
在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标
求面积最大 连接AC,在第四象限的抛物线上找一点P,使得 ACP面积最大,求出P
坐标
讨论直角三角 连接AC,在对称轴上找一点P,使得 ACP为直角三角形,求出P坐标
或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.
讨论等腰三角 连接AC,在对称轴上找一点P,使得 ACP为等腰三角形,求出P坐标
讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,
E四点为顶点的四边形为平行四边形,求点F的坐标
2、这里小改动,把C(0,-3)改成C(2,-3)
连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、P为顶点的四边形构成平行四边形
和最小差最大
1、如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4, ). (1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s
二次函数与几何整合常见中考压轴题型
本周专题:二次函数与几何整合常见中考压轴题型
一 基础构图:
y=x2?2x?3(以下几种分类的函数解析式就是这个)
y ★和最小,差最大 在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标
在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标
B O C D 面积最大,求出P坐标
A x ★求面积最大 连接AC,在第四象限找一点P,使得?ACP
y ★ 讨论直角三角 连接AC,在对称轴上找一点P,使得?ACP
为直角三角形,
B O C D A x 求出P坐标或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.
y ★ 讨论等腰三角 连接AC,在对称轴上找一点P,使得?ACP求出P坐标
为等腰三角形,
B O C D y A x ★ 讨论平行四边形 1、点E在抛物线的对称轴上,点F在抛物线上,
且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标
B O C D A x 二 综合题型
例1 (中考变式)如图,抛物线y??x2?bx?c与x轴交与A(1,0),B(-3,0)两点,顶点为D。交Y轴于C (1)求该
中考数学二次函数压轴题题型归纳
页眉内容
中考二次函数综合压轴题型归类
一、常考点汇总
1、两点间的距离公式:()()22B A B A x x y y AB -+-=
2、中点坐标:线段AB 的中点C 的坐标为:???
??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:
(1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠
(3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k
3、一元二次方程有整数根问题,解题步骤如下:
① 用?和参数的其他要求确定参数的取值范围;
② 解方程,求出方程的根;(两种形式:分式、二次根式)
③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()0122
2=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上)
例:若抛物线()3132
+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求
二次函数常见题型(含答案)
中考二次函数常见题型
考点1:二次函数的数学应用题
1. (2011湖北黄石,16,3分)初三年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数。若某生的位置数为10,则当m+n取最小值时,m·n的最大值为 。
【答案】36
2. (2011浙江金华,23,10分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.
(1)当n=1时,如果a=-1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O,
①试求出当n=3时a的值; ②直接写出a关于n的关系式.
yyCDy = 1.1厘MNBOCBCx… OAFEACOx… ABx图1 图
二次函数与几何图形结合题型总结
“二次函数”常考题型总结
“二次函数”综合题往往考察以下几类,面积,周长、最值,或者与四边形、圆等结合考察一些相关的性质等,题目编号灵活,难度有点大,今天整理了常考题型,希望对同学们能有所帮助!
面 积 类
1、 如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
2、 如图,抛物线y=ax2- 3/2 x-2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
1
平行四边形类
3、如图,在平面直角坐标系中,抛物线y=x 2 +mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t。 (1)分
中考数学-二次函数综合
2020年-春季-二次函数综合1.(初2020级重庆巴蜀初三下第三次模拟)
2.(初2020级重庆南开初三下第三次模拟)
3.(初2020级重庆西附初三下第三次模拟)
4.(初2020级重庆一外初三下第三次模拟)
5.(初2020级重庆一中初三下第三次模拟)
6.(初2020级重庆巴蜀初三下第二次模拟)
7.(初2020级重庆一中初三下第二次模拟)
8.(初2020级重庆一外初三下第二次模拟)
9.(初2020级重庆育才初三下第二次模拟)
10.(初2020级万二中初三下第二次模拟)如图,在平面直角坐标系中,直线y=﹣x+5与x
轴交于点B,与y轴交于点C.抛物线
y=x2+bx+c经过点B和点C,与x轴交于另一点A,连接AC.
(1)求抛物线解析式;
(2)若点Q在直线BC上方的抛物线上,连接QC,QB,当△ABC与△QBC的面积比等于2:3时,求点Q的坐标:
(3)在(2)的条件下,点H在x轴的负半轴,连接AQ,QH,当∠AQH=∠ACB时,求点H的坐标.
11.(初2020级重庆八中初三下第一次模拟)
12.(初2020级重庆巴蜀初三下第一次模拟)
13.(初2020级重庆南开初三下第一次模拟)
14.(初2020级重庆一中初三下第一次模拟)
15.(初2020级重庆育才初