锂离子电池充电器电路图
“锂离子电池充电器电路图”相关的资料有哪些?“锂离子电池充电器电路图”相关的范文有哪些?怎么写?下面是小编为您精心整理的“锂离子电池充电器电路图”相关范文大全或资料大全,欢迎大家分享。
锂离子电池太阳能充电器设计
导读: 太阳能充电解决方案中需要重点关注的因素包括:最大功率点跟踪 (MPPT)、反向漏电保护、充电终止方法技巧以及太阳能板崩溃保护等。
关键字:锂离子电池 太阳能充电
最近几年,使用电池供电的小型设备发展迅速,例如:平板电脑、掌上游戏机、视频播放器、数字相框等。一般而言,这些设备都使用可再充锂离子 (Li-Ion) 电池作为电源。一些常见的充电解决方案包括墙上适配器类充电器和通用串行总线 (USB) 类充电器。尽管这些充电器解决方案是为锂离子电池充电的一种低成本的解决方案,但是这些充电器也都存在一个共同的缺点:依靠主电源才能工作运行。这种对主电源的依赖性增加了用户的电费开销,同时也增加了温室气体排放。而且由于对主电源有依赖性,这些充电解决方案的便携性也大打折扣。要想以一种有益环境的方式来延长电池使用时间,利用太阳能板收集自然光能量的太阳能充电器或许是一种理想的方案。太阳能充电器的另一个好处是它提供了一种可移动的充电解决方案。
本文中,我们将对开发太阳能充电解决方案过程中一些重要的考虑因素进行说明。需要考虑这些因素的主要原因是:随着光照环境不同,电压和电流也随之变化,那么太阳能电池板就会成为一个高输出阻抗电源。而墙上电源适配器或者USB电源均为低
剃须刀充电器电路图
剃须刀充电器电路图
时间:2012-07-25 16:38:50
本剃须刀充电器主要是用于对1.2V 500mA镍镉电池充电的,电路如图所示。 1、主要技术指标
a、输入电压:200~240V;b、频率:50~60Hz;c、充电电流:500mA;d、充电时间<14小时;e、电机M:电压:1.2~1.5V;功率:2W.
2、工作原理
当XP插入交流220V市电源时,发光二极管VD2显充电指示。充电回路由整流二极管VD3、电阻R2、二极管VD1、电阻R1形成的。电容C1、C2为滤波网络。
当充电完毕后,用于剃须时,按动按键开关SB,则电池GB通过SB供电给电机M,使之转。电路中VD3还起着隔离作用。按键开关SB除图中型号外,也可据剃须刀充电器的容量自行合理实际。
下面是 [剃须刀充电电路]的电路图
本图是一成品剃须刀的内部电路。其中包括市电降压整流器,由振荡器组成的DC/AC变换器和整流器,将市电电压变为1.6V左右的直流电。
50Hz的交流电下0.22μ/400V的电容容抗约为14.5K,因此即使是输出端短路,电路最大的电流也只有15mA。2SD1350和脉冲变压器T组成直流变换器,以降低电压,同时达到提高次级电流的目的。如果2SD1350集电极平均电流为10mA,则加到集电极的电压约为38V,可
最新手机充电器电路图-11
手机充电器电路图
多普达696充电器电路图 多普达696充电器电路图电路原理图所示,整个电路大致分为显示、电压比较、基准电压、开关控制四大部分, 其中由双色发光二极管LED、电阻R5、电阻R6、集成电路U1B(U1、最大的那个集成电路中 其中由双色发光二极管LED、电阻R5、电阻R6、集成电路U1B(U1、最大的那个集成电路中 的一部分)构成显示电路,指示充电状态;由三极管Q1(电路原理图中并没有编号,笔者自命 的一部分)构成显示电路,指示充电状态;由三极管Q1(电路原理图中并没有编号,笔者自命 名)构成充电控制电路,负责控制充电电流;由芯片U1A以及电阻R8、R9、R1O、R11等周边 构成充电控制电路,负责控制充电电流;由芯片U1A以及电阻R8、R9、R1O、R11等周边 元件构成电压比较电路,负责判断电池的充电状态;由IC芯片U2、电容C3等元件构成基准电 元件构成电压比较电路,负责判断电池的充电状态;由IC芯片U2、电容C3等元件构成基准电 压电路,以便U1A比较电池状态;二极管D1在这里起保护作用,防止电池电压高于电源电压 压电路,以便U1A比较电池状态;二极管D1在这里起保护作用,防止电池电压高于电源电压 造成电池放电。 电路工作原
锂离子电池论坛 - 锂离子电池工艺大全-经典
锂离子电池原理、常见不良项目及成因、涂布方法汇总
(2009-07-11 09:28:25)
一般而言,锂离子电池有三部分构成:1.锂离子电芯;2.保护电路(PCM);3.外壳即胶壳。 分类
从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如: MOTOROLA 191,SAMSUNG 系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA 998,8088,NOKIA的大部分机型 1.外置电池
外置电池的封装形式有超声波焊接和卡扣两种: 1.1超声波焊接 外壳
这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有 :MOTOROLA 191,SAMSUNG 系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样
处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了
动力锂离子电池
锂离子电池概况
由于日益紧迫的能源与环境保护压力,许多国家竞相开发绿色能源技术,其中尤其以电动汽车应用为代表的动力锂离子电池领域发展最为迅速。国内外企业都紧盯着这一大蛋糕,纷纷投入资金和人力进行研究并逐步实现产业化,希望能在未来获得巨大的收益回报。为此,我们特别约请业内专家及厂商代表,请他们畅谈未来动力锂离子电池的发展前景及如何把握市场机遇。
动力锂离子电池目前的发展现状?
·我国的锂离子电池研究发项目一直是国家“863”的重点项目,大部分材料实现了国产化,国内已自建和引进多条生产线,配套材料厂也有多个,均已形成大规模生产。 ·动力锂离子电池目前正处于产业的导入期。 黄学杰
长期以来,许多发达国家把电动汽车列为主要攻克的目标,美国支持多个国家实验室和企业一起承担车用锂离子电池的开发工作。欧盟则制定了高比能量蓄电池的发展计划,采用规划和计划的手段,保证了基础研究的连续性,并不断产生出阶段成果。日本在锂离子电池领域具有垄断地位,索尼、三洋电机、松下电池、NEC等著名公司都建有大规模锂离子电池生产厂,而且大多数制造商除了保持和扩大原有品牌的产量外,都在利用各自的优势开拓锂离子动力电池新产品。总的来看,日本仍然是动力锂离子电池
电池充电器原理图详解
电池充电器原理图详解(附图)
时间:2012-06-27 11:49:27 来源:中国装备制造网 点击量:42
锂电池充电器原理图是什么呢?在充电时,手机和电动车使用的充电器多为锂电池充电器,那么你知道锂电池充电器原理图是什么呢?下面世界工厂网小编就和大家聊聊锂电池充电器原理图,也长长见识。
锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,是因为它除监视电池的充电状态外,还能分阶段控制电池的最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA和70mA,最后以10mA左右的涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。
本装置电路如附图所示。IC1构成频率约1Hz1的多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1.25V,电路由+15V经R1给电池提供约10mA的充电电流。通电后IC1起振,其③脚输出的脉冲触发IC2工作,使输出端Q1~Q5依次出现高
几种蓄电池自动充电器电路
简单的几种蓄电池自动充电器电路
8.蓄电池自动充电器(1)
本文介绍的充电器可方便地问时为两组6v、2Ab~4从的曹电池充电,具有自动停充及指示功能。
电路如图4—8所示。FU是短路保护管,LEDl为供电指示,调节RP1可改变ICl的输出电压,RP2的中心端为电压比较器IC2的正相输入端提供一参考电压,R3为充电电流取样电阻,VD可防止电池放电,LED2是充电状态指示,C1、C2用来防止脉冲干扰。
自动停充的控制原理是:充电电流随充电的进行逐渐减小,在R3上的压降也减小。若它小于RP2上的设定值,IC2的②脚电平与③脚电平的关系由高于变为低于,⑥脚输出由高电平跳变至低电平,VD反偏,充电电流下降为零,此时,由于R3上已无压降.改IC2的⑥脚保持低电平,LED2发光指不电池已充足电待用。
元器件可参照图4—8选取。IC1上应加装散热器,IC2并不一定要使用LM741,其他型号的单运放或多运放的—个单元也可以。
调试过程如下:先不装IC2,不接蓄电池,调节RPl.使ICl的输出电压为8.5V。断开供电,装上IC2,接上充足电的两蓄电池组。恢复供电,调节RP2使LED2由不发光到开始发光,固定RPl和RP2即可。
9.茸电池自动充电器(Ⅱ)
本文介绍的简易充电器可
延长锂离子电池寿命的充电和放电方法
欲打印此文章,从您的浏览器菜单中选择“文件”后再选“打印”。
延长锂离子电池寿命的充电和放电方法
上网时间:2008年06月17日
人们一直非常重视提高锂离子电池的容量,以期以物理尺寸最小的电池实现最长的产品工作时间。但是在
有些应用中,较长的电池寿命、较多的充电次数或较安全的电池比电池容量更重要。本文介绍几种可以极
大延长电池寿命的锂离子电池充电和放电方法。
几乎所有高性能便携式产品都会使用包括锂离子聚合物电池在内的可再充电锂离子电池,这是因为与其他
可再充电电池相比,锂离子电池有较高的能量密度、较高的电池电压、自放电少、周期寿命非常长,而且
环保,且充电和维护简单。另外,由于其具有相对高的电压(2.9V至4.2V),因此很多便携式产品都能用单
节电池工作,从而简化了产品总体设计。
决定锂离子电池周期寿命或服务寿命的因素
不存在任何延长或缩短电池寿命的单一因素,而常常是几种因素合起来发挥作用。就延长周期寿命而言有
以下方法可以延长电池寿命:
1.采用部分放电的做法。在再充电前仅使用20%或30%的电池容量会极大延长周期寿命。作为一个一般性
的规则,5至10个浅放电周期等于1个满放电周期。尽管部分放电周期可能达到数千次,但是保持电池处于
满充电状态也缩短电池寿命。如果可能
锂离子电池的前言
PMMA-P(VDF-HFP)固体电解质
摘要:采用干法制备P(VDF-HFP)-PMMA聚合物电解质,PMMA与电解液有很好的相容性,采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学手段对目标材料进行了结构表征和性能测试。考察了PMMA与P(VDF-HFP)不同比例的聚合物电解质对锂离子电池的性能的影响。结果表明?? 关键词:锂离子电池 聚合物电解质 P(VDFF-HFP)-PMMA 1. 前言
1.1 锂离子聚合物电解质
在20世纪60-70年代就开始对锂离子二次电进行研究,与传统的二次电池如铅酸电池、Ni/Cd电池、Ni/MH电池等相比,锂离子电池在能量密度、充放电性能、工作温度等有着明显的优势。锂离子的循环寿命长、自放电率低,而且又是在当今要求低碳环保的时代中具有绿色环保的优点,近年来随着电池的迅速发展,已经广泛应用于家电产品。因此要进一步提高锂离子电池的性能和技术。目前对二次电池研究和发展方向是在高容量下能可逆脱嵌锂的正负极材料及电解质材料。尽管过去的二十几年中SONY公司使液态的锂离子电池成功商业化生产,液态锂离子电解质存在内部短路、燃烧、溶剂易挥发、漏液等安全隐患。由于凝胶聚合物电解质的室温离子电导率可达1
锂离子电池正极材料
锂离子电池正极材料
锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正、负极材料、电解质、隔膜等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。2013年第九期《产业趋势》中,我们曾为读者展示过几种主要的锂离子电池负极材料,本期我们将对锂离子电池正极材料进行介绍。
衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:
? ? ? ? ? ? ?
正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压 锂离子能够在正极材料中大量、可逆地嵌入和脱嵌,以使电池有较高的比容量
在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化,以保证电池良好的循环性能
在锂离子的嵌入/脱嵌过程中,正极的氧化还原电位变化应尽可能小,使电池能够平稳地充放电
正极材料应有较高的电导率和锂离子扩散系数,便于电池快速充放电 正极材料不与电解质等发生附反应 价格便宜,对环境无污染
目前获得广泛应用的锂离子电池正极材料体系主要包括钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4/ LiMnO2)、锂镍锰钴氧三元材料(LiNixC