解析几何192条结论

“解析几何192条结论”相关的资料有哪些?“解析几何192条结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“解析几何192条结论”相关范文大全或资料大全,欢迎大家分享。

有关解析几何的经典结论

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第1页,共8页

有关解析几何的经典结论

一、椭 圆

点P 处的切线 PT 平分△ PFF 2在点P 处的外角.

PT 平分△ PF 1F 2在点P 处的外角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径

的圆,除去长轴的两个端点

以焦点弦PQ 为直径的圆必与对应准线相离. 以焦点半径PF 为直径的圆必与以长轴为直径的圆

内切.

X

V 椭圆— 2 =1 (a > b > 0)的左右焦点分别为 F 1, F 2 ,点P 为椭圆上任意一点

a b

2 Y

ZF 1PF 2 =,则椭圆的焦点角形的面积为

S F 1PF 2 =b tan?. 2 2 X

V 椭圆二 2 -1 (a > b > 0)的焦半径公式:

a b

| MF 1 Ha ex o , ∣MF 2 戶a -eχ√ F'-c,。),F 2(c,O) M (X ), y °)). 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和

AQ 分别交相应于焦点 F 的椭圆准线于 M N 两点,贝U MF ⊥ NF. 过椭圆一个焦点F 的直线与椭圆交于两点 P 、Q, A 、A 为椭圆长轴上的顶点,

AP 和A 2Q 交于点 M A2P 和AQ 交于点 N 贝U MF ⊥N

解析几何重要公式和结论

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

篇一:平面解析几何的公式与结论

平面解析几何的公式与结论

1.直线的五种方程

(1)点斜式 y?y1?k(x?x1) (直线l过点P1(x1,y1),且斜率为k). (2)斜截式 y?kx?b(b为直线l在y轴上的截距). (3)两点式 (4)截距式

y?y1y2?y1x?y

?

x?x1x2?x1

(y1?y2)(P1(x1,y1)、P2(x2,y2) (x1?x2)).

?1(a、b分别为直线的横、纵截距,a、b?0) ab

(5)一般式 Ax?By?C?0(其中A、B不同时为0).

2.两条直线的平行和垂直

(1)若l1:y?k1x?b1,l2:y?k2x?b2 ①l1||l2?k1?k2,b1?b2; ②l1?l2?k1k2??1.

(2)若l1:A1x?B1y?C1?0,l2:A2x?B2y?C2?0,且A1、A2、B1、B2都不为零, ①l1||l2?

A1A2

?B1B2

?C1C2

②l1?l2?A1A2?B1B2?0; 3.四种常用直线系方程 (1)定点直线系方程:经过定点P0(x0,y0)的直线系方程为y?y0?k(x?x0)(除直线x?x0),其中k是待定的系数; 经过定点P0(x0,y0)的直线系方程为A(x?x0)?B(y?y0)?0,其中A,

二级结论在解析几何中的作用

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

二级结论在解析几何中的作用

一 椭圆、双曲线的“垂径定理”

22xy1.(14浙江理)设直线x?3y?m?0(m?0)与双曲线2?2?1(a?b?0)两条渐近线ab分别交于点A,B,若点P(m,0)满足PA?PB,则该双曲线的离心率是__________.

x2y22. 已知点是椭圆2?2?1(a?b?0)的右焦点,过原点的直线交椭圆于点

ab直于轴,直线

3. 设动直线

与椭圆

交于不同的两点

交椭圆于点,PB?PA,则该椭圆的离心率__________.

,垂

与双曲线

交于不同的两点且则符合条件的直线共有______条.

4.已知某椭圆的焦点是点为

,且

过点并垂直于轴的直线与椭圆的一个交

.椭圆上不同的两点

满足条件:

成等差数列.

(1)求该椭圆方程; (2)求弦中点的横坐标; (3)设弦

的垂直平分线的方程为

,求的取值范围.

x2y25.(16四川)已知椭圆:2?2?1(a?b?0)的一个焦点与短轴的两个端点是正三角形

ab的三个顶点,点

在椭圆上.

(Ⅰ)求椭圆的方程;

(Ⅱ)设不过原点且斜率为的直线与椭圆交于不同的两点,线段的中点为,直

线

与椭圆交于,证明:

1

二 圆锥曲线的共圆问题

y2?1在y轴正半轴上的焦点,过F6. (11全国)已知O为坐标

解析几何

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

汤建良:《解析几何》课程教学大纲

深圳大学数学与计算科学学院

课程教学大纲

(2006年10月重印版)

课程编号 22143102

课程名称 解析几何

课程类别 专业必修

教材名称 解析几何

制 订 人 汤建良

审 核 人 刘则毅

2005年 4 月修订

- 1 -

汤建良:《解析几何》课程教学大纲

一、课程设计的指导思想

(一)课程性质 1.课程类别:专业必修课 2.适应专业:数学与应用数学专业(应用数学方向) 3.开设学期:第壹学期 4.学时安排:周学时3,总学时42 5.学分分配:3学分 (二)开设目的 解析几何是中学几何的继续与发展,既有深刻的数学理论意义,也有广泛的实际应用价值。在实际工程中的许多重要领域都有它的应用价值。通过本课程的学习,同学们还可以加深对中学三角和几何学的认识与理解,有助于解决一些初等数学问题。解析几何的一些思想方法在数学中具有普遍性。通过本课程的学习,能使学生提高数学素养,并为学习有关后继课程以及进一步扩大数学知识面奠定必要的数学基础。 (三)基本要求 掌握解析几何的基本理论与方法,深刻理解解

解析几何

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

篇一:解析几何知识点总结

抛物线的标准方程、图象及几何性质:p?0

1、定义:

2、几个概念:

① p的几何意义:焦参数p是焦点到准线的距离,故p为正数;1

② ;

4

③ 方程中的一次项的变量与对称轴的名称相同,一次项的系数符号决定抛物线的开口方向。 ④ 通径:2p

3、如:AB是过抛物线y2?2px(p?0)焦点F的弦,M是AB的中点,l是抛物线的准线,MN?l,N为垂足,BD?l,AH?l,D,H为垂足,求证:

(1)HF?DF; (2)AN?BN; (3)FN?AB;

(4)设MN交抛物线于Q,则Q平分MN;

2

(5)设A(x1,y1),B(x2,y2),则y1y2??p,x1x2?

12

p; 4

(6)1?1

|FA|

|FB|

?

2; p

(7)A,O,D三点在一条直线上

2

(8)过M作ME?AB,ME交x轴于E,求证:|EF|?1|AB|,|ME|?|FA|?|FB|;

2

1、 双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|e(e注意: |

F1F2|)的点的轨迹。

?1)的点的轨迹。两个定点为双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。

PF1|?|PF2|?2a与|PF2|?|PF1|?2a(2a?|F1F2

大学解析几何

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

空间解析几何

基本知识 一、向量

1、已知空间中任意两点M1(x1,y1,z1)和M2(x2,y2,z2),则向量

M1M2?(x2?x1,y2?y1,z2?z1)

2、已知向量a?(a1,a2,a3)、b?(b1,b2,b3),则 (1)向量a的模为|a|???????a1?a2?a3

222(2)a?b?(a1?b1,a2?b2,a3?b3) (3)?a?(?a1,?a2,?a3) 3、向量的内积a?b

(1)a?b?|a|?|b|?cos?a,b? (2)a?b?a1b1?a2b2?a3b3

其中?a,b?为向量a,b的夹角,且0??a,b???

注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平面的夹角。 4、向量的外积a?b(遵循右手原则,且a?b?a、a?b?b)

??????????????????????????ia?b?a1??ja2b2??ka3 b3??b1??5、(1)a//b?a??b?????a1a2a3 ??b1b2b3(2)a?b?a?b?0?a1b1?a2b2?a3b3?0 二、平面

100

1、平面的点法式方程

已知平面过点P(x0,y0,z0),且法向量为n?(A,B,C),则平面方程为

解析几何1

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《解析几何》教学大纲

一. 总 则

1. 本课程的教学目的和要求:

解析几何和其他自然科学一样,是在生产实践中产生和发展起来的,有着丰富的内容和实际背景,广泛应用于工程技术,物理、化学、生物、经济及其他领域。本课程的教学目的在于培养学生运用解析方法解决几何与实际问题的能力,掌握空间几何课程的基本知识和内容,并为进一步学习后继课程作准备。 2. 本课程的主要内容: 第一章 矢量与坐标 第二章 轨迹与方程 第三章 平面与空间直线

第四章 柱面、椎面、旋转曲面与二次曲面 第五章 二次曲线的一般理论 3. 教学重点与难点:

重点:空间直线、平面、常见二次曲面和平面、一般二次曲线的理论。 难点:已知条件求轨迹。

4. 本课程的知识范围以及与相关课程的关系:

本课程主要以线性代数为工具,研究空间解析几何,即研究空间中的直线、平面、二次曲线及平面上的二次曲线。解析几何与高等代数、数学分析有着密切的关系。在数学分析中,常常用到解析几何的方法图形的许多性质,并且解析几何为代数中不少对象提供了具体的几何解释,给代数以直观的几何形象,加强了数量关系的直观鲜明性,使几何、分析、代数构成了一个不可分

《 解析几何》试卷A答案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

盐城师范学院考试试卷

2007 - 2008 学年 第一学期

数学科学学院 数学与应用数学专业《 解析几何》试卷A

标准答案及参考标准

一、单项选择题(本大题共5小题,每小题2分,共10分)

1-5 CDAAB

二、填空题(本大题共5小题10空,每空3分,共30分)

1.

6, 1,1, 1 或 1, 1,1 . 2. 3x 3y 2 0.

3. 9, 9, 9且 9. 4. x 3y z 5 0.

x25.

y2z2

9 4

1,4 9. 三、判断题(正确的打“√”,错误的打“×”.本大题共5小题,每题2分,共10分)

1-5 √×√××

四、计算题(本大题共3小题,每题10分,共30分)

1. 解 任取母线

x 11 y 1 1 z 1

2

上一点M x1,y1,z1 ,则过M的纬圆方程为 x x1 y y1 2 z z 1 0, x2 y2 z 1 2 x222 ……………………4’ 1 y1 z1 1 .

又M在母线上,有 x1 11 y1 1 1 z1 1

2

t ., ……………………7’ 联立消去参数有

5x2 5y2 2z

解析几何教程答案

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 向量代数

习题1.1

1. 试证向量加法的结合律,即对任意向量a,b,c成立

(a?b)?c?a?(b?c).

证明:作向量AB?a,BC?b,CD?c(如下图),

D c

b?c a?b

AC

b B

a 则 (a?b)?c?(AB?BC)?CD?AC?C?D ,ADa?(b?c)?AB?(BC?CD)?AB?BD?AD,

故(a?b)?c?a?(b?c).

2. 设a,b,c两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是a?b?c?0.

证明:必要性,设a,b,c的终点与始点相连而成一个三角形?ABC,

C

c b

A

a B

则a?b?c?AB?BC?CA?AC?CA?AA?0. 充分性,作向量AB?a,BC?b,CD?c,由于

0?a?b?c?AB?BC?CD?AC?CD?AD,所以点A与D重合,即三向量

a,b,c的终点与始点相连构成一个三角形。

3. 试证三角形的三中线可以构成一个三角形。

证明:设三角形?ABC三边AB,BC,CA的中点分别是D,E,F(如下图),并且记

CF c

E

b

A

a D B

a?AB,b?BC,c?CA,则根据书中例1.1.1,三条中线表示的向量分别是

CD?111(c?b)

解析几何高考复习

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

解析几何高考复习

一、抛物线

1、已知抛物线C:y?4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点。(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程; (II)问是否存在定点M,不论直线l绕点M如何转动,使得

2、已知抛物线C:y?mx(m?0),焦点为F,直线2x?y?2?0 交抛物线C于A、 (1)若抛物线C B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q,上有一点R(xR,2)到焦点F的距离为3,求此时m的值; (2)是否存在实数m,使?ABQ 是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由。

3、知F为抛物线y?2px?p?0?的焦点,抛物线上点G的横坐标为2,且满足GF?3

22211恒为定值。 ?22|AM||BM|(1)求抛物线的方程;(2)点M?2,0?的坐标为,过点F作斜率为k1的直线与抛物线交于

A,B两点。A,B两点的横坐标不为2。连接AM,BM并延长交抛物线于C,D两点,设直线CD的斜率为k2,判断

k1是否作为定值?若是,求出定值;若不是,说明理由。 k2DAOFBMC4、如图,已知抛物线C: