数据挖掘课后答案
“数据挖掘课后答案”相关的资料有哪些?“数据挖掘课后答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数据挖掘课后答案”相关范文大全或资料大全,欢迎大家分享。
数据挖掘课后题答案
数据挖掘——概念概念与技术
Jiawei Han Micheline Kamber 著
范明 孟晓峰 译
第 1 章 引
言
1.1 什么是数据挖掘?在你的回答中,针对以下问题:
1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测
聚 类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功 能的例子。 解答:
特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特
征 可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特 征包括作为一种高的年级平均成绩(GPA:Grade point aversge) 的信息, 还有所修的课程的最大数量。
区分是将目标类数据对象的一般特性与一个或多个对比类对象的一
般 特性进行比较。例如,具有高 GPA 的学生的一般特性可被用来与具有 低 GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的 轮廓,就像具有高 GPA 的学生的 75%是四年级计算机科学专业的学生, 而具有低 GPA 的学生的 65%不是。
关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的
特 征 值的 条 件。 例 如, 一 个数 据 挖掘 系 统可 能 发现 的 关联 规 则为 :
数据仓库与数据挖掘课后习题答案
数据仓库与数据挖掘
第一章 课后习题 一:填空题
1)数据库中存储的都是数据,而数据仓库中的数据都是一些历史的、存档的、归纳的、计算的数据。
2)数据仓库中的数据分为四个级别:早起细节级、当前细节级、轻度综合级、高度综合级。 3)数据源是数据仓库系统的基础,是整个系统的数据源泉,通常包括业务数据和历史数据。 4)元数据是“关于数据的数据”。根据元数据用途的不同将数据仓库的元数据分为技术元数据和业务元数据两类。
5)数据处理通常分为两大类:联机事务处理和联机事务分析
6)Fayyad过程模型主要有数据准备,数据挖掘和结果分析三个主要部分组成。
7)如果从整体上看数据挖掘技术,可以将其分为统计分析类、知识发现类和其他类型的数据挖掘技术三大类。
8)那些与数据的一般行为或模型不一致的数据对象称做孤立点。
9)按照挖掘对象的不同,将Web数据挖掘分为三类:web内容挖掘、web结构挖掘和web使用挖掘。
10)查询型工具、分析型工具盒挖掘型工具结合在一起构成了数据仓库系统的工具层,它们各自的侧重点不同,因此适用范围和针对的用户也不相同。
二:简答题
1)什么是数据仓库?数据仓库的特点主要有哪些?
数据仓库是一个面向主题的、集成的、相对稳定的、
数据挖掘概念与技术 - 课后题答案汇总
数据挖掘——概念概念与技术
Data Mining
Concepts and Techniques
习题答案 第 1 章 引言
1.1 什么是数据挖掘?在你的回答中,针对以下问题:
1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测
聚 类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功 能的例子。 解答:
? 特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特
征 可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特 征包括作为一种高的年级平均成绩(GPA:Grade point aversge) 的信息, 还有所修的课程的最大数量。
? 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一
般 特性进行比较。例如,具有高 GPA 的学生的一般特性可被用来与具有 低 GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的 轮廓,就像具有高 GPA 的学生的 75%是四年级计算机科学专业的学生, 而具有低 GPA 的学生的 65%不是。
? 关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的
特 征 值的 条 件。 例 如, 一 个数 据 挖掘 系 统可 能 发现
数据挖掘概念与技术 - 课后题答案汇总
数据挖掘——概念概念与技术 Data Mining
Concepts and Techniques
习题解答
Jiawei Han
Micheline Kamber 范明 孟晓峰 译
著
目录
第 1 章 引言
1.1 什么是数据挖掘?在你的回答中,针对以下问题:
1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚 类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功 能的例子。 解答:
? 特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征 可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特 征包括作为一种高的年级平均成绩(GPA:Grade point aversge) 的信息, 还有所修的课程的最大数量。
? 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般 特性进行比较。例如,具有高 GPA 的学生的一般特性可被用来与具有 低 GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的 轮廓,就像具有高 GPA 的学生的 75%是四年级计算机科学专业的学生, 而具有低 GPA 的学生的 65%不是。
数据挖掘部分课后习题
1、数据清理、数据集成、数据变换、数据规约各自的目的是什么?有哪些常用方法?
数据清理的目的:去掉噪声和无关数据 ,用其例程通过填写空缺的值,平滑噪声数据,识别,删除孤立点,并解决不一致来清理数据。
常用的方法:
处理空缺值;可用以下方法:忽略该记录、去掉属性 、手工填写空缺值、使
用默认值、使用属性平均值、使用同类样本平均值 、预测最可能的值。 噪声数据的处理: 噪声数据是一个测量变量中的随机错误或偏差。可用以下
方法:分箱:按箱平均值平滑,按箱中值平滑,按箱边界平滑等;聚类:聚类将相似的值组织成群或类,落在群或类外的值就是孤立点,也就是噪声数据;回归,让数据适合一个函数(如回归函数)来平滑数据。
数据集成的目的:将多个数据源中的数据结合起来存放在一个一致的数据存储中.。
常用的方法:
模式集成:主要是实体识别问题,利用元数据(关于数据的数据),这可以
避免模式集成中的错误。
数据变换的目的:把原始数据转换成为适合数据挖掘的形式。
常用的方法:
用平滑消除噪声数据
聚类来对数据进行汇总
数据概化使用高层次概念替换低层次“原始”数据来进行概念分层 规范化将属性数据按比例缩放,使之落入一个小的特定区间
属性构造(特征构造)来帮助提高精度和对高
数据挖掘作业答案
数据挖掘作业答案
第二章 数据准备
5.推出在[-1,1]区间上的数据的最小-最大标准化公式。
解:标准化相当于按比例缩放,假如将在[minA,maxA]间的属性A的值v映射到区间[new_minA,new_maxA],根据同比关系得:
(v-minA)/(v’-new_minA)=(maxA-minA)/(new_maxA-new_minA)
化简得:v’=(v-minA)* (new_maxA-new_minA)/ (maxA-minA)+ new_minA
6.已知一维数据集X={-5.0 , 23.0 , 17.6 , 7.23 , 1.11},用下述方法对其进行标准化: a) 在[-1,1]区间进行小数缩放。
解:X’={-0.050 , 0.230 , 0.176 , 0.0723 , 0.0111} b) 在[0,1]区间进行最小-最大标准化。
解:X’={0 , 1 , 0.807 , 0.437 , 0.218 } c) 在[-1,1]区间进行最小-最大标准化。
解:X’={-1 , 1 , 0.614 , -0.126 , 0.564} d) 标准差标准化。
解:mean=8.788
数据挖掘试题参考答案
数据挖掘试题参考答案
大学课程《数据挖掘》试题参考答案
范围:
1.什么是数据挖掘?它与传统数据分析有什么区别?
定义:
数据挖掘(Data Mining,DM)又称数据库中的知识发现(Knowledge Discover in Database,KDD),是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
区别:
(1)数据挖掘的数据源与以前相比有了显著的改变;
数据是海量的;
数据有噪声;
数据可能是非结构化的;
(2)传统的数据分析方法一般都是先给出一个假设然后通过数据验证,在一定意义上是假设驱动的;与之相反,数据挖掘在一定意义上是发现驱动的,模式都是通过大量的搜索工作从数据中自动提取出来 。即数据挖掘是要发现那些不能靠直觉发现的信息或知识,甚至是违背直觉的信息或知识,挖掘出的信息越是出乎意料,就可能越有价值。
在缺乏强有力的数据分析工具而不能分析这些资源的情况
医药数据挖掘
山西省中医药研究院
医药数据挖掘
Data mining in medicine
季海霞1
山西省中医药研究院 ,030012 ,2533360723@qq.com
1简介 ....................................................................... 1 2过程 ....................................................................... 1 3常用算法 ................................................................... 2
3.1 关联分析 ............................................................. 3 3.2 分类分析 ............................................................. 3
3.3 聚类分析 ...........................................................
数据挖掘试题
单选题
1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)
A. 关联规则发现 B. 聚类
C. 分类 D. 自然语言处理
3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B. 分类和预测 C. 数据预处理 D. 数据流挖掘
4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)
A. 分类 B. 聚类 C. 关联分析 D. 隐马尔可夫链
6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A) A. 探索性数据分析 B. 建模描述
C. 预测建模 D. 寻找模式和规则 11.下面哪种不属于数据预处理的方法? (D)
A变量代换 B离散化 C 聚集 D 估计遗漏值
12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 5
数据挖掘现状
数据挖掘现状简介
数据挖掘:中国互联网未来的十年——专访党书国 [ 卷首 ]
本文章被浏览2222次
门户解决了web0.5时代的信息匮乏;Google解决了web1.0时代的信息泛滥;Fackbook解决了web2.0时代的社交需求;未来是谁的十年?展望web3.0时代,当高效的社交网络趋于信息量爆炸,我们庞大的社交关系也需要一个"Google"来处理,那就是下一个十年,数据挖掘的十年,网络智能的十年。
数据挖掘:互联网阶段性产物
数据挖掘之所以在近几年颇受关注与互联网发展的阶段有关。随着网页的增多,用户量达到一定规模,就产生了大量用户和网页应用交互的行为,这些数据实际上非常有意义。互联网也因此形成了两条主线结构。一种是以信息为对象的,还有一种是以人为对象。但是人与信息之间不是割裂的,而是时时刻刻交织在一起,而且信息是通过人流动的,人也在流动的信息中构建新的关系,这催生了如Facebook这样类型的网站。数据挖掘被频频提及,并不是资本操作的结果,而是随着互联网发展的进一步深化,原本被大家忽略的数据挖掘的价值逐渐凸显,如何使广告投放更加有效,增加广告投放ROI,如何提高网站的转化率以及用户再次购买的能力,这些都需要数据挖掘在背后做支