线段求最值问题
“线段求最值问题”相关的资料有哪些?“线段求最值问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线段求最值问题”相关范文大全或资料大全,欢迎大家分享。
线段之间的最值问题6
浅谈初中数学线段之和最值问题
近年来,在全国各地出现的中考试题的平面几何最值问题中,呈现出变化多、涉及面广、形式灵活的景象,对学生来讲是个难点;如果深入思考,可以发现:这类试题的命制都是立足于教材,解决途径都是运用转化的思想“化折为直”。本文中,笔者根据近几年的中考试题,结合浙教版教材和自己的教学体会,谈谈初中数学中求线段之和最值的求解策略。
1.直接应用定(公)理求最值
平面几何解决最短线路问题时常用的公理(定理):①两点之间线段最短.②三角形的两边之和大于第三边, 两边之差小于第三边(②是由①得出);③直线外一点到直线的所有线段中垂线段最短.
1.1应用两点之间线段最短
教材链接:七上7.3线段的长短作业题: D如图,A、B、C、D表示4个村庄.村民们准备合打一口水井,(1)略(2)你能给出一中使水井到各村庄的距离之和最小的方案吗?若能,请标出水井的位置,并说明理由. A 解题分析:
教材作业题中,因点D与点B、点A与点C是定点,当水井打在AC与BD的交点时,水井到各村庄的距离之和最小,直接利用“两点之间线段最短”的原理。
中考链接:(2009山东潍坊)已知边长为a的正三角形ABC(一象限),两顶点A,B分别在平面直角坐标系的x轴,y轴的
浅谈初中数学线段之和最值问题
浅谈初中数学线段之和最值问题
近年来,在全国各地出现的中考试题的平面几何最值问题中,呈现出变化多、涉及面广、形式灵活的景象,对学生来讲是个难点;如果深入思考,可以发现:这类试题的命制都是立足于教材,解决途径都是运用转化的思想“化折为直”。本文中,笔者根据近几年的中考试题,结合浙教版教材和自己的教学体会,谈谈初中数学中求线段之和最值的求解策略。
1.直接应用定(公)理求最值
平面几何解决最短线路问题时常用的公理(定理):①两点之间线段最短.②三角形的两边之和大于第三边, 两边之差小于第三边(②是由①得出);③直线外一点到直线的所有线段中垂线段最短. 1.1应用两点之间线段最短 教材链接:七上7.3线段的长短作业题: DC 如图,A、B、C、D表示4个村庄.村民们准备合打一口水井,(1)略(2)你能给出一中使水井到各村庄的距离之和最小的方案吗?若能,请标出水井的位置,并说明理由. A 解题分析: B 教材作业题中,因点D与点B、点A与点C是定点,当水井打在AC与BD的交点时,水井到各村庄的距离之和最小,直接利用“两点之间线段最短”的原理。
中考链接:(2009山东潍坊)已知边长为a的正三角形ABC(一象限),两顶点A,B分别在平面直角坐标系的x
浅谈初中数学线段之和最值问题
浅谈初中数学线段之和最值问题
近年来,在全国各地出现的中考试题的平面几何最值问题中,呈现出变化多、涉及面广、形式灵活的景象,对学生来讲是个难点;如果深入思考,可以发现:这类试题的命制都是立足于教材,解决途径都是运用转化的思想“化折为直”。本文中,笔者根据近几年的中考试题,结合浙教版教材和自己的教学体会,谈谈初中数学中求线段之和最值的求解策略。
1.直接应用定(公)理求最值
平面几何解决最短线路问题时常用的公理(定理):①两点之间线段最短.②三角形的两边之和大于第三边, 两边之差小于第三边(②是由①得出);③直线外一点到直线的所有线段中垂线段最短.
1.1应用两点之间线段最短
教材链接:七上7.3线段的长短作业题: D如图,A、B、C、D表示4个村庄.村民们准备合打一口水井,(1)略(2)你能给出一中使水井到各村庄的距离之和最小的方案吗?若能,请标出水井的位置,并说明理由. A 解题分析:
教材作业题中,因点D与点B、点A与点C是定点,当水井打在AC与BD的交点时,水井到各村庄的距离之和最小,直接利用“两点之间线段最短”的原理。
中考链接:(2009山东潍坊)已知边长为a的正三角形ABC(一象限),两顶点A,B分别在平面直角坐标系的x轴,y轴的
几何图形中线段和差最值问题
中考数学压轴题解题策略
几何图形中线段和差最值问题的解题策略
两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).
三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).
两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.
解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题.
图1 图2 图3
,?BAC?45°,?BAC的平分线交BC于点1.如图,在锐角△ABC中,AB?42D,M、N分别是AD和AB上的动点,则BM?MN的最小值是___________ .
C D
P D C A M N M
A N B B (第1题第2题图
2.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.
建立模型巧求最值
建立模型,巧求最值
引言:最值问题是一类综合性较强的问题,而线段和(差)问题,解决这类问题的基本依据有: (1) “两点之间线段最短”,(2) “垂线段最短”,(3) “三角形两边之差小于第三边”。
一、常用几何模型:
Ⅰ.“将军饮马”模型:
(1)、在一条直线m上,求一点P,使PA+PB最小;
(1)点A、B在直线m两侧:(2)、点A、B在直线m同侧。
APPBA,B在同侧A'A,B在异侧BA
A、A?关于直线m的对称。
2、在直线m、
AAPPA'PAn上分别找两点P、Q,使PA+PQ+QB最
BQBQ建立模型巧求最值第 1 页 共 15 页 QBA,B在两直线外侧B'B'都在内侧一内一外小。
又区分为(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧: Ⅱ.台球两次碰壁模型 已知点A位于直线m,n 的内侧,在直线m、n分别上求点P、Q点, 使PA+PQ+QA周长最短.
变式:已知点A、B位于直线m,n 的内侧,在直
线m、n分别上求点D、E点,使得围成的四边形ADEB周长最短. 小例:?AOB?45
?建立模型巧求最值第 2 页 共 15 页
点P在?AOB内,且OP?10,
动态最值问题 - 圆内最值问题
“一师一优课”
《动态最值问题——圆内最值问题》教学设计
西安爱知中学 郭晏铖
【学情分析】
在运动变化中求最值的问题灵活性较强,涉及的知识面较广,对学生思维能力要求较高,经常令学生束手无策。因此如何正确快速的求解成为学生学习中的难点。本节课前,学生已经学习了圆的基本知识,以及点和圆、直线和圆的位置关系。四班的同学在年级中属中等偏上水平,对于基本知识的学习掌握的较快,但缺乏应用的灵活性。与圆有关的最值问题可以变零散的知识为学生整体的认识,变重复枯燥的学习为新奇有趣的探索,在训练学生逻辑思维的同时,还能培养学生的探索能力 【教学方法】
对于圆中求最值问题,学生经常感到无从下手,处理此类题目首先要明确题目中运动的对象,然后就是根据按照题目要求作出运动过程中某一时刻的图象。现在学生普遍欠缺作图能力,因此我在题目的设置上也遵循由易到难的原则,从给出图形到简单作图再到复杂作图,让学生在这个过程中体会作图的重要性。
任何运动变化问题中总隐含着定量和不变关系,这也是解决这类问题的关键。在设计时我也注重设计情境,引导学生自己挖掘题目中的信息,找到这些关键点。从例1中的定量过渡到不变的位置关系再到不变的数量关系,剥茧抽丝,层层递进,从而体会探究的乐趣。
求最值方法-高考数学复习
一问一答--------最值问题方法
总论
1高中数学求最值有哪些方法?
答:有9种方法:1)配方法 2)判别式法;3)不等式法;4)换元法;5)函数单调性法;6)三角函数性质法;7)导数法;8)数形结合发 ;9)向量法 2 如何将恒成立问题转化为最值问题?
答:1) a?f(x)恒成立,则a?f(x)max 2)a?f(x)恒成立,则a?f(x)min
一元整式函数最值
1、二次函数开口方向、对称轴、所给区间均确定,如何求最值?
答:1)确定对称轴与x轴交点的横坐标是否在所给区间。2)如果在所给区间,一个最值在顶点处取得,另一个最值在与顶点横坐标较远的端点处取得。3)若不在所给区间,利用函数的单调性确定其最值。
2、二次函数所给区间确定,对称轴位置变化,如何求最值?
答:1)移动对称轴,将对称轴平移到定区间的左侧、右侧及区间内讨论,2)在区间内,只考虑对称轴与区间端点的距离即可。
3、二次函数所给区间变化,对称轴位置确定,如何求最值?
答:分类讨论,分为四种情况:1)对称轴在闭区间左侧;2)对称轴在闭区间右侧3)对称轴在闭区间内且在中点的左侧;4)对称轴在闭区间内且在中点的右侧(或过中点); 4、二次函数所给区间、对称轴位置都不确定,如何求
利用几何知识求函数最值
利用几何知识求函数最值
数学与应用数学专业2011级 艾 英
摘要:解析几何是用代数研究几何,反过来,若能根据代数问题的结构特征,联想几何背景,建立解几模型,然后再利用解析几何的有关公式、性质、图形特征、位置关系探求解法。这对于开拓思路,提高和培养分析问题、解决问题的能力大有裨益。在下面我们就来探讨当所给函数具有某种几何意义时,求函数的最值采用建立解析几何基本模型的方法,把函数的最值转化为求两点间的距离,两点连线的斜率,点到直线的距离,直线的截距,定比分点公式,二次曲线等。通过上面的方法使我们在解决某些用代数方法解决函数最值中相当繁琐的问题简化。使解题变得更轻松。
关键字;解析几何;函数;最值;
Geometric kowledge seeking the most value function
Ludengrong
School of Mathematics, Mathematics and Information and Applied Mathematics 2006 Instructor: Zhang Sanhua
Abstract: Algebraic geometry analytic geometry is, i
求函数最值的方法总结
求函数最值的常用以下方法:
1.函数单调性法
先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现.
1
例1 设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为,则a=________.
2【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a的值. 【解析】 ∵a>1,∴函数f(x)=logax在区间[a,2a]上是增函数,∴函数在区间[a,2a]上的最大值与最小值分1
别为loga2a,logaa=1.∴loga2=,a=4.故填4.
2
【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m,n]上的最值:若函数f(x)在[m,n]上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采
林初中2017届中考数学压轴题专项汇编:专题7旋转之求线段最值(附
专题7 旋转之求线段最值
破解策略
用旋转思想解决线段最值问题的本质用三角形三边关系解决问题
如图,线段OA, OB为定长,则A, B, O三点共线时,AB取得最值: 当点B位于处B1时,AB取得最小值OA-OB;当点B位于B2处时,AB取得最大值OA+OB.
BAB1OB2最小值最大值
常见的题型有:
1. 如图,Rt△ABC大小固定,其中∠ABC=90°,点A, B分别在互相垂直的直线m, n上滑 动.
nBCOAm
取AB中点D, 连接OD, CD. 当O, C, D三点共线时,OC取得最大值OD+CD.
nBCDOAm
2. 如图,等边△ABC大小固定,点A, B分别在互相垂直的直线m, n上滑动.
nBCOAm
取AB中点D, 连接OD, CD. 当O, C, D三点共线时,OC取得最大值OD+CD.
nBDOAm
3. 如图,Rt△ABC大小固定,其中∠ABC=90°,点A, B分别在互相垂直的直线m, n上滑动.
CnBOC
取AB中点D, 连接OD, CD. 当O, C, D三点共线时,OC取得最小值|CD –OD|.
AmnBODAmC
例题讲解
例1.已知Rt△ABC中,∠ACB=90°,tan∠BAC=
1. 若