概率论与数理统计期末及答案
“概率论与数理统计期末及答案”相关的资料有哪些?“概率论与数理统计期末及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“概率论与数理统计期末及答案”相关范文大全或资料大全,欢迎大家分享。
概率论与数理统计答案
习题一
3 设A,B,为二事件,化简下列事件:
(1)(A?B)(A?B)?(AB?BA?B)?(AB?B)?B (2)(A?B)(A?B)?(AA?AB?BA?B)?B
4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。
p?10?9?8?7?6105?72?42104?3024104?0.3024
5 n张奖券中有m张有奖的,k个人购买,每人一张,求其中至少有一人中奖的概率。 答案:1?kCn?mkCn.
6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少? 解;将这五双靴子分别编号分组A?{a1,a2,a3,a4,a5};B?{b1,b2,b3,b4,b5},则
4C表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有C5.
不能配对只能是:一组中选i 只,另一组中选4-i只,且编号不同,其可能选法为
i4?iC5C5?i;(i?4,3,2,1,0)
3113C54?C5C2?C52C32?C5C4?C54 P(C)?1?P(C)?1?4C105?45?4?2??3?5?4?522?1?10?9?8?7? 4?3?2?110?4
概率论与数理统计
《概率论与数理统计》课程论文
浅谈概率论的思想发展及应用
能源科学与工程学院
于晓滢 1130240415
哈尔滨工业大学
摘 要
概率论是一门历史悠久的学科,关于它的起源众说纷纭,不过大家都承认的是,概率论是研究偶然、随机现象的规律性的数学理论,它拥有着自己独立的研究问题和有代表性的思想方法,并在现代生活的多个方面发挥着作用,拥有着不可替代的地位。本文将总结概率论中所应用的几种典型思想方法及演变,并陈述概率论在当代生活中的几种必要应用,让我们对这一学科有一个更深刻的了解。
I
目 录
摘 要 ................................................................................................................................................. I 第1章 概率论的诞生 ..................................................................................................................... 1
概率论与数理统计试题及答案
概率论与数理统计(46学时)A卷评分标准 共23页 第1页
2008-2009学年 第1学期 概率论与数理统计(46学时) A
一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、A、B为两个随机事件,若P(AB)?0,则
(A)A、B一定是互不相容的; (B)AB一定是不可能事件; (C)AB不一定是不可能事件; (D)P(A)?0或P(B)?0.
Y 0 1 1/3 1/6 2 0 1/12
2、二维离散型随机变量(X,Y)的分布律为
X 1/6 1/4 1 2 F(x,y)为(X,Y)的联合分布函数,则F(1.5,1.5)等于
(A)1/6; (B)1/2; (C)1/3; (D)1/4.
3、X、Y是两个随机变量,下列结果正确的是
(A)若E(XY)?EXEY,则X、Y独立; (B)若X、Y不独立,则X、Y一定相关;
(C)若X、Y相关,则X、Y一定不独立;
《概率论与数理统计》期末试题一答案
1、 设A与B为互不相容的两个事件,P(B)?0,则P(A|B)? 0 。
2、 事件A与B相互独立,P(A)
3、 设离散型随机变量X的分布函数为 0 x??1
F(x)? a ?1?x?1
且P(X?2)?12?0.4,P(A?B)?0.7, 则 P(B)? 0.5 。
23?a 1?x?2
a?b
16x?2
56 ,则a? ,b? 。
4、 某人投篮命中率为
5、 设随机变量X与Y相互独立,X服从“0-1”分布,p?0.4;Y服从?布?(2),则E(X?Y)?____2.4_______,
6、 已知D(X)?16,D(Y)?9,?
7、 设总体X服从正态分布
XX2123XY45,直到投中为止,所用投球数为4的概率为___
4625________。
?2的泊松分
.
D(X?Y)?____2.24_______?13, 则D(X?2Y)?___36___.
N(0,?2),从总体中抽取样本X1,X2,X3,X4,则统
计量
??XX2224服从
《概率论与数理统计》习题及答案
概率论与数理统计
第一部份 习题
第一章 概率论基本概念
一、填空题
1、设A,B,C为3事件,则这3事件中恰有2个事件发生可表示为 。 2、设P(A)?0.1,P(A?B)?0.3,且A与B互不相容,则P(B)? 。 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。 5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A,B为两事件,P(A)?0.7,P(AB)?0.3,则P(A?B)? 。 7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A,B为两事件,P(A)?0.5,P(A?B)?0.2,则P(AB)? 。 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率
《概率论与数理统计》习题及答案
概率论与数理统计
第一部份 习题
第一章 概率论基本概念
一、填空题
1、设A,B,C为3事件,则这3事件中恰有2个事件发生可表示为 。 2、设P(A)?0.1,P(A?B)?0.3,且A与B互不相容,则P(B)? 。 3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。 5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A,B为两事件,P(A)?0.7,P(AB)?0.3,则P(A?B)? 。 7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A,B为两事件,P(A)?0.5,P(A?B)?0.2,则P(AB)? 。 9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率
概率论与数理统计习题答案
概率论与数理统计 习题参考答案(仅供参考) 第一章 第1页 (共97页)
第一章 随机事件及其概率
1. 写出下列随机试验的样本空间:
(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;
(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;
(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下
(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1}
(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}
2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生;
(2)A与B都发生,而C不发生; (3)A、B、C都发生; (4)A、B、C都不发生; (5)A、B、C不都发生;
(6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解 所求的事件表示如下
(1)ABC
(2)ABC(6)A(3)ABC(4)ABC
(5)ABC(7)AB(8)ABBACCACBCBC3
概率论与数理统计习题答案
参考答案
安徽工业大学应用数学系编
概率论及统计应用练习题
1
第一章练习题
1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”Ai表示“第
i个开关闭合”请用Ai表示事件B
解:
B?A1A3?A2A3?A4?A5A
2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.
解:设事件A1表示被监测器发现,事件A2表示被保安人员发现,B表示小偷被设事件B表示小偷被发现。发现。 A1表示被监测器发现,A2表示被保安人员发现,P(B)?P(A1?A2)?P(A1)?P(A2)?P(A1A2)?0.6?0.4?0.2?0.8
3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?
解:三人到校先后共有3!种情形,周昂比张文丽先到校有C3种情形。 P?mn?C3223!?0.5
4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问
(1) 乙市为雨天时,甲市为雨天的概率是多少?
(2
概率论与数理统计答案(1)
概率论与数理统计习题及答案
习题 一
1.略.见教材习题参考答案.
2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件: (1) A发生,B,C都不发生; (2) A与B发生,C不发生; (3) A,B,C都发生;
(4) A,B,C至少有一个发生; (5) A,B,C都不发生; (6) A,B,C不都发生;
(7) A,B,C至多有2个发生; (8) A,B,C至少有2个发生. 【解】(1) ABC (2) ABC (3) ABC
(4) A∪B∪C=ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC (5) ABC=A?B?C (6) ABC
(7) ABC∪ABC∪ABC∪ABC∪ABC∪ABC∪ABC=ABC=A∪B∪C (8) AB∪BC∪CA=ABC∪ABC∪ABC∪ABC 3.略.见教材习题参考答案
4.设A,B为随机事件,且P(A)=0.7,P(A?B)=0.3,求P(AB). 【解】 P(AB)=1?P(AB)=1?[P(A)?P(A?B)] =1?[0.7?0.3]=0.6
5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求: (1) 在什么条件
概率论与数理统计习题答案
参考答案
安徽工业大学应用数学系编
概率论及统计应用练习题
1
第一章练习题
1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”Ai表示“第
i个开关闭合”请用Ai表示事件B
解:
B?A1A3?A2A3?A4?A5A
2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.
解:设事件A1表示被监测器发现,事件A2表示被保安人员发现,B表示小偷被设事件B表示小偷被发现。发现。 A1表示被监测器发现,A2表示被保安人员发现,P(B)?P(A1?A2)?P(A1)?P(A2)?P(A1A2)?0.6?0.4?0.2?0.8
3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?
解:三人到校先后共有3!种情形,周昂比张文丽先到校有C3种情形。 P?mn?C3223!?0.5
4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问
(1) 乙市为雨天时,甲市为雨天的概率是多少?
(2