高三数学公式及知识点汇总
“高三数学公式及知识点汇总”相关的资料有哪些?“高三数学公式及知识点汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高三数学公式及知识点汇总”相关范文大全或资料大全,欢迎大家分享。
数学公式及知识点汇总
平面解析几何
简易逻辑
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q” 逆命题: “若q,则p” 否命题:“若?p,则?q” 逆否命题:“若?q,则?p” 4、四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p?q,则p是q的充分条件,q是p的必要条件. 若p?q,则p是q的充要条件(充分必要条件).
利用集合间的包含关系: 例如:若A?B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
6、逻辑联结词:⑴且(and) :命题形式p?q;⑵或(or):命题形式p?q; ⑶非(not):命题形式?p.
p?q p p?q ?p q 真 真 假 假 真 假 真 假 真 假 假 假 真 真 真 假 假 假 真 真 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示;
全称命题p:?x?M,p(x); 全称命题p的否定?p:?x?M,?p(x)。 ⑵存在
小学数学公式及知识点总结
一、常用数量关系计算公式:
1、 加数+加数=和 和-一个加数=另一个加数
2、 被减数-减数=差 被减数-差=减数 差+减数=被减数 3、 因数×因数=积 积÷一个因数=另一个因数
4、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 5、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 6、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 7、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 8、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 9、 单产量×数量=总产量 总产量÷数量=单产量 总产量÷单产量=数量
10、工作效率×工作时间=工作总量 工作总量÷工效=时间 工作总量÷时间=工效
二、图形计算公式和线:
直线:没有端点,可以向两端无限延长。 射线:只有一个端点。可以向一端无限延长。
线段:有两个端点。射线和线段都是直线的一部分。 两点之间,线段最短。 垂线、垂足
两条直线相交,有一个角是直角时,就说这两
高考数学公式及知识点总结
高考前数学知识点总结
一. 教学内容: 知识点总结
二. 教学过程:
高考临近,对以下问题你是否有清楚的认识?
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 如:集合A?中元素各表示什么?
?x|y?lgx?,B??y|y?lgx?,C??(x,y)|y?lgx?,A、B、C
2. 进行集合的交、并、补运算时,不要忘记集合本身和空集?的特殊情况。 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质:
(1)集合?a1,a2,??,an?的所有子集的个数是2n;
(2)若A?B?A?B? (3)德摩根定律:
A,A?B?B;
UUUUUU
4. 你会用补集思想解决问题吗?(排除法、间接法)
C?A?B???CA???CB?,C?A?B???CA???CB?
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”(?),“且”(?)和
“非”(?).
若p?q为真,当且仅当p、q均为真
若p?q为真,当且仅当p、q至少有一个为真 若?p为真,当且仅当p为假 6. 命题的四种形
黄冈中学中考数学公式定理知识点考点汇总
初中数学知识点总结
1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,-,0.231,0.737373?,
,
.无限不环循小数叫做无理数.如:π,-
,0.1010010001?(两
个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a≥0
丨a丨=a;a≤0
丨a丨=-a.如:丨-
丨=
;丨3.14-π丨=π-3.14.
3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.
4、把一个数写成±a310n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.073105,0.000043=4.3310ˉ5. 5、乘法公式(反过来就是因式分解的公式): ①(a+b)(a-b)=a2-b2.扩展:
1n?n?1??n?n?1n?n?1??n?n?1??n?n?12
②(a±b)2=a2±2ab+b2.扩展:
或 1?1?1?1?22a?2??a???2?a???a?2?2a?aa?a??2同理:
或 1?1?1?1?22x?2??x???2?
高中文科数学公式及知识点速记
高中文科数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;若f (x) 0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率
f (x0),相应的切线方程是y y0 f (x0)(x x0).
4、几种常见函数的导数
'n'n 1''
①C 0;②(x) nx; ③(sinx) cosx;④(cosx) sinx;
⑤(ax)' axlna;⑥(ex)' ex; ⑦(logax) 5、导数的运算法则
'
11'
;⑧(lnx) xlnax
u'u'v uv'
(v 0). (1)(u v) u
高中文科数学公式及知识点速记
高中文科数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;若f (x) 0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率
f (x0),相应的切线方程是y y0 f (x0)(x x0).
4、几种常见函数的导数
'n'n 1''
①C 0;②(x) nx; ③(sinx) cosx;④(cosx) sinx;
⑤(ax)' axlna;⑥(ex)' ex; ⑦(logax) 5、导数的运算法则
'
11'
;⑧(lnx) xlnax
u'u'v uv'
(v 0). (1)(u v) u
高中数学公式及知识点超级速记
数学学习必备
高中数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;若f (x) 0,则f(x)为减
函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率f (x0),相应的切线方程是y y0 f (x0)(x x0).
4、几种常见函数的导数
'
①C 0;②(xn)' nxn 1; ③(sinx)' cosx;④(cosx)' sinx;
x'xx'x
⑤(a) alna;⑥(e) e; ⑦(logax)
'
11'
;⑧(lnx) xlnax
5、导数的运算法则
u'u'v uv'
(v 0). (1)(u
2013高考数学公式 - 模拟 - 复习 - 知识点归纳
集合与简易逻辑
知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法.
集合元素的特征:确定性、互异性、无序性.
3 ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. (二)含绝对值不等式、一元二次不等式的解法及延伸
1.含绝对值不等式的解法
(1)公式法:ax?b?c,与ax?b?c(c?0)型的不等式的解法. (2)定义法:用“零点分区间法”分类讨论.
(3)几何法:根据绝对值的几何意义用数形结合思想方法解题.
特例① 一元一次不等式ax>b解的讨论;
2
②一元二次不等式ax+box>0(a>0)解的讨论. ??0 ??0 二次函数 ??0 y?ax2?bx?c (a?0)的图象 一元二次方程 有两相异实根 有两相等实根 无实根 ax2?bx?c?0?a?0?的根ax2?bx?c?0(a?0)的解集x1,x2(x1?x2) bx1?x2?? 2a ?xx?x或x?x? 12?b?
中考最后压轴题初中数学知识点及数学公式总结
初中数学知识点及数学公式总结
1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论
(升级版)高中数学公式及知识点速记
新课标人教A版--高中文科数学重要公式及知识点速记(升级版),补充了许多内容,更实用更全面,欢迎下载!~~
高中数学公式及知识点速记
一、函数、导数
1、函数的单调性
(1)设x1、x2 [a,b],x1 x2那么
f(x1) f(x2) 0 f(x)在[a,b]上是增函数; f(x1) f(x2) 0 f(x)在[a,b]上是减函数.
(2)设函数y f(x)在某个区间内可导,若f (x) 0,则f(x)为增函数;
若f (x) 0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f( x) f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f( x) f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 3、函数y f(x)在点x0处的导数的几何意义
函数y f(x)在点x0处的导数是曲线y f(x)在P(x0,f(x0))处的切线的斜率f (x0),相应的切线方程是y y0 f (x0)(x x0). 4、几种常见函数的导数
'
①C 0;②(xn)' nxn 1; ③(sinx)' cosx;④(cosx)' sinx;
x'xx'x
⑤(a) alna;⑥(e) e; ⑦(logax)
'