随机化算法求定积分
“随机化算法求定积分”相关的资料有哪些?“随机化算法求定积分”相关的范文有哪些?怎么写?下面是小编为您精心整理的“随机化算法求定积分”相关范文大全或资料大全,欢迎大家分享。
0046算法笔记 - 随机化算法舍伍德随机化思想解决跳跃表问题
问题描述
如果用有序链表来表示一个含有n个元素的有序集S,则在最坏情况下,搜索S中一个元素需要O(n)计算时间。提高有序链表效率的一个技巧是在有序链表的部分结点处增设附加指针以提高其搜索性能。在增设附加指针的有序链表中搜索一个元素时,可借助于附加指针跳过链表中若干结点,加快搜索速度。这种增加了向前附加指针的有序链表称为跳跃表。
应在跳跃表的哪些结点增加附加指针以及在该结点处应增加多少指针完全采用随机化方法来确定。这使得跳跃表可在O(logn)平均时间内支持关于有序集的搜索、插入和删除等运算。
例如:如图,(a)是一个没有附加指针的有序表,而图(b)在图(a)的基础上增加了跳跃一个节点的附加指针。图(c)在图(b)的基础上又增加了跳跃3个节点的附加指针。
在跳跃表中,如果一个节点有k+1个指针,则称此节点为一个k级节点。以图(c)中跳跃表为例,看如何在改跳跃表中搜索元素8。从该跳跃表的最高级,即第2级开始搜索。利用2级指针发现元素8位于节点7和19之间。此时在节点7处降至1级指针进行搜索,发现元素8位于节点7和13之间。最后,在节点7降至0级指针进行搜索,发现元素8位于节点7和11之间,从而知道元素8不在
matlab求定积分之实例说明
一、符号积分
符号积分由函数int来实现。该函数的一般调用格式为:
int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;
int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;
int(s,v,a,b):求定积分运算。a,b分别表示定积分的下限和上限。该函数求被积函数在区间[a,b]上的定积分。a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。当a,b中有一个是inf时,函数返回一个广义积分。当a,b中有一个符号表达式时,函数返回一个符号函数。
例:
求函数x^2+y^2+z^2的三重积分。内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:
>>syms x y z %定义符号变量
>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式
F2 =
1610027357/65
用随机算法求第k小项 - 图文
1, 问题描述
设A[1,n]是一个有n个数组成的无序数列,寻找其第k小元素就是将A按照非递减的顺序排列后,新序列中的第k个元素。
寻找第k小元素最直接的方法就是直接将A进行排序, 然后取出第k个元素,但是此类方法时间复杂度较高,至少需要Ω(nlogn)时间,因为基本所有已学的排序方法在最坏情况下都需要这么多时间。
在第三章中老师课上教导了利用分治法求第k小元素的算法,其时间复杂度为O(n)。其基本思想如下:在分治法递归调用的每一个划分步骤中都将舍弃一定比例的元素,而在剩余元素中寻找目标。故在我的理解中这种分治法的性能主要依赖于每次递归调用能舍去的元素的比例,以及为舍弃这些元素所花费的代价。在之后的学习中,我们又接触到了随机算法,不由思考,分治法中的划分可以不可以通过随机算法来随机选择一个位置,然后根据这个位置进行舍弃序列中的元素,有没有办法改进算法。
2, 随机选择算法
Algorithm: RandomSelect (A[low, high], k)
输入:数组A[low,...high]和整数k,1≤ k≤ high-low+1 输出:A[low…high]中的第k小元素
v ← random(low,high)
x ←A[v]
广义积分、定积分应用
第四节 广义积分
在一些实际问题中,我们常遇到积分区间为无穷区间或被积函数为无界函数的积分,它们已经不属于前面所说的定积分,因此,我们需要对定积分作两种推广,从而形成了广义积分的概念. 一. 无穷区间上的广义积分
1.引例1.求下述广义曲边梯形的面积.
(1)由曲线y?e?x,及x轴、y轴所围成的图形的面积(作图) 解:A?limb????b0?x?b??1 edx?lim?1?e?b????(2)由曲线y?ex,及x轴、y轴所围成的图形的面积(作图) 解:A?lima????0axa??1. edx?lim?1?e?a????2.定义1.设函数f?x?在区间?a,???上连续,取b?a.如果极限 lim存在,则称此极限为函数f?x?在区间?a,???上的广义积分,记作?即:???a??b????f?x?dxab
af?x?dx.
f?x?dx?lim??b????f?x?dxab ————(1)
这时,也称广义积分?惯上称为广义积分???aaf?x?dx收敛;如果上述极限不存在,函数f?x?在区间?a,???上的广义积分就没有意义,习
f?x?dx发散.
定义2.设函数f?x?在区间???,b?上连续,取a
定积分讲义
课程安排:2学期,周学时 4 , 共 96 学时. 主要内容:定积分的计算 要求:听课 、复习 、 作业 本次课题(或教材章节题目):第五章 定积分 第一节 定积分的概念与性质 教学要求: 1.了解定积分的概念 2.掌握定积分的性质 重 点:定积分的性质 难 点: 1.定积分的概念 2.定积分的性质 教学手段及教具:讲授为主 讲授内容及时间分配: 1 复习 5分钟 2 定积分问题举例 15分钟 3 定积分定义 15分钟 4 定积分的性质 30分钟 5 例题及练习 25分钟 课后 作业 参考 资料 定积分的概念与性质 一、复习不定积分的概念 二、定积分问题举例 曲边梯形的面积 曲边梯形由连续曲线y?f(x)(f(x)?0)、y?f(x)(f(x)?0)、x?b所围成(如图1). 图1 提问:怎样
定积分及其应用
第5章 定积分及其应用
本章讨论积分学的第二个问题——定积分.定积分是某种特殊和式的极限,它是从大量的实际问题中抽象出来的,在自然科学与工程技术中有着广泛的应用.
本章主要讲授定积分的定义、性质,积分上限函数及其导数,牛顿-莱布尼兹公式,定积分的换元法和分部积分法,广义积分,以及定积分在几何、物理、经济上的应用等.
通过本章的学习,学生能够理解定积分的概念及其几何意义,了解函数可积的条件;掌握定积分的基本性质和对积分上限函数求导数的方法;能利用牛顿-莱布尼兹公式和定积分的换元法、分部积分法计算定积分;了解广义积分收敛和发散的概念,会求广义积分;会用定积分求平面图形的面积和简单的旋转体的体积,会用定积分解决沿直线运动时变力所做的功等实际问题.
5.1 定积分的概念与性质
5.1.1 引例
1.曲边梯形的面积
设函数f(x)在区间[a,b]上连续,且f(x)?0.由曲线y?f(x),直线x?a,x?b以及x轴所围成的平面图形称为曲边梯形(如图5-1所示),下面讨论如何求该曲边梯形的面
积.
不难看出,该曲边梯形的面积取决于区间[a,b]及曲边y?f(x).如果y?f(x)在[a,b]上为常数,此时曲边梯形为矩形,则其面积等于h(b?a).现在
定积分的应用
洛阳师范学院 数学科学学院 《数学分析》教案
第十章 定积分的应用
在上一章引入定积分概念时,曾把曲边梯形的面积、变速直线运动的路程表示为积分和的极限,即要用定积分来加以度量。事实上,在科学技术中采用“分割、作和、取极限”的方法去度量实际量得到了广泛的应用。本章意在建立度量实际量的积分表达式的一种常用方法——微元法,然后用微元法去阐述定积分在某些几何、物理问题中的应用。
§1平面图形的面积
教学目标:掌握平面图形面积的计算公式. 教学内容:平面图形面积的计算公式.
(1) 基本要求:掌握平面图形面积的计算公式,包括参量方程及极坐标方程所定义的平面图形面积的计算公式.
(2) 较高要求:提出微元法的要领. 教学建议:
(1) 本节的重点是平面图形面积的计算公式,要求学生必须熟记并在应用中熟练掌握.
(2) 领会微元法的要领. 教学过程:
1、微元法
bI?众所周知,定积分
?f?x?dxa是由积分区间
?a,b?及被积函数f(x)所决定
的,而定积分对积分区间具有可加性,即如果把积分区间作为任意划分
?:x0?a?x1?x2???xn?1?xn?b
记
?Ik??xkxk?1f(x)dx k?1,2
随机抽题算法
随机抽题算法
0 引言
随机抽题是在线考试系统中的核心部分,目前大部分的在线考试系统或无纸化考试系统大都采用了随机函数实现随机抽题,但大部分在线考试系统在随机抽题时存在抽题速度慢、试题覆盖面不稳定、重点不突出、灵活性差等问题。本文讨论了优化随机抽题的方法,给出了具体的抽题公式和查询语句。 1 优化使用随机函数方法研究
原始在线考试系统中,使用随机函数从题库中抽取试题,抽题公式为Int(Rnd*M)公式1。在抽取第一题时,直接将题号存放在指定的空数组中,表示抽取成功,以后每抽取一题,将题号和数组中已存在元素进行比较,若存在则抽取失败,若不存在则抽取成功,并将题号依次存储在该数组中,直到抽取结束。这种抽题方法的缺陷是时间浪费。这种时间浪费在单机的时候并不明显,但在B/S模式或C/S模式下,机器越多速度越慢。为了解决重复抽题,避免试题抽取过慢,可采用分段法、分类法和分类分段结合法。
1.1 分段法 分段法是解决重复抽题最简单的方法,其原理是将题库中的试题M
分成N段,然后从每段中抽取一题,抽取公式为Int(Rnd*(M\\N))+i*(M\\N)(0≤i≤N-1)公式2。分段法的优点显而易见,可以完全杜绝试题重复抽取,但对题库中试题的数量有要求,即M
定积分的应用论文
学号:
本科毕业论文
学 院 专 业 年 级 姓 名 论文题目 定积分的若干应用 指导教师 薛艳昉 职称 讲师
2013年5月16日
目 录
摘 要 ····························································································· 1 关键词 ····························································································· 1 Abstract ···········································································
定积分的概念说课稿
定积分的概念说课稿
基础教学部 高黎明
一、教材分析 1、教材的地位和作用
本节课选自同济大学《高等数学》第五章第一节定积分的概念与性质,是上承导数、不定积分,下接定积分在几何学及物理学等学科中的应用。定积分的应用在高职院校理工类各专业课程中十分普遍。 2、教学目标
根据教材内容及教学大纲要求,参照学生现有的知识水平和理解能力,确定本节课的教学目标为:
(1)知识目标:理解定积分的基本思想和概念的形成过程,掌握解决积分学问题的“四步曲”。
(2)能力目标:培养学生分析和解决问题的能力,培养学生归纳总结能力,为后续的学习打下基础。
(3)情感目标:从实践中创设情境,渗透“化整为零零积整”的辩证唯物观。 3、教学重点和难点
教学重点:定积分的概念和思想 。
教学难点:理解定积分的概念,领会定积分的思想 。 二、 教法和学法 1、教法方面
以讲授为主:案例教学法(引入概念),问题驱动法(加深理解), 练
习法(巩固知识), 直观性教学法(变抽象为具体) 。 2、学法方面
板书教学为主,多媒体课件为辅(化解难点、保证重点) 。 (1)发现法解决第一个案例 ; (2)模仿法解决第二个案例 ; (3)