几何非线性分析需要解决的问题
“几何非线性分析需要解决的问题”相关的资料有哪些?“几何非线性分析需要解决的问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“几何非线性分析需要解决的问题”相关范文大全或资料大全,欢迎大家分享。
几何非线性分析
ANSYS非线形分析指南 几何非线形分析
几何非线性分析
随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。 大应变效应
一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。首先,如果这个单元的形状改变,它的单元刚度将改变。(看图2─1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。(看图2─1(b))。小的变形和小的应变分析假定位移小到 足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。
相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solutio
几何非线性分析讲课讲稿
学习资料
仅供学习与参考几何非线性分析
随着位移增长,一个有限单元已移动的坐标可以以多种方式改变结构的刚度。一般来说这类问题总是是非线性的,需要进行迭代获得一个有效的解。
大应变效应
一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变变。首先,如果这个单元的形状改变,它的单元刚度将改变。(看图2─1(a))。其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变。(看图2─1(b))。小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移。(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级。
相反,大应变分析说明由单元的形状和取向改变导致的刚度改变。因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。通过发出NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。这效应改变单元的形状和取向,且还随单元转动表面载荷。(集中载荷和惯性载荷保持它们最初的方向。)
大跨度桥梁实用几何非线性分析.
大跨度桥梁实用几何非线性分析
一. 引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80 年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分
析中,按照参考构形的不同可分为TL(Total Lagranrian)
法和UL(Updated Lagrangian) 法[1]。后来,引入随转坐标系后又分别得出
CR(Co-rotational)-TL 法和CR- LU法[2,3],在工程中UL (或CR-UL 法应
用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理
ansys解决非线性分析不收敛的技巧
解决非线性分析不收敛的技巧
大家都提到了收敛困难的问题为加速收敛应该注意一下几个问题 : 1 收敛容差ANSYS缺省的收敛准则会根据单元的不同而检查不同的收敛力素和容差例如当采用solid65和link8时,缺省的要检查F和DISP两个力素其容差也是缺省的(Help中有)对于钢筋混凝土结构一般而言其位移比较小仅使用F力素收敛即可但其容差也同时放松一般采用5%即可(缺省是5)命令:cnvtol,f,,0.05,2 2 其它选项的设置
自动时间步打开此选择可以让程序决定子步间荷载增量的大小及其是增加或是减小收敛速度较快(命令autots,1)打开后似乎定义的子步数不起控制作用了
打开线性搜索可以帮助收敛的速度(命令:lnsrch,1) 打开预测器可以帮助收敛的速度(命令red,on)
平衡迭代次数在每一子步中的迭代次数缺省是25,将其增加例如改为50(命令: neqit,50)
NSUBST此值不宜过小否则计算过程中老是调整影响计算速度 当然对于比较简单的算例或是分布模型可能不需要如此多的选项但对于复杂的模型是需要的各位可以试试
影响非线性收敛稳定性及其速度的因素很多:
1、模型——主要是结构刚度的大小。对于某些结构,从概念的角度看,可以认
变截面薄壁空心墩几何非线性分析
变截面薄壁空心墩几何非线性分析
总第
期年第期
交
通
科
技
变截面薄壁空心墩几何非线性分析冯仲仁,
叶再军武汉
’
徐齐福。
乔长江
‘
武汉理工大学土木工程与建筑学院
中交第二公路勘察设计研究院
武汉
摘
要
用能量法对变截面薄壁空心墩进行几何非线性分析通过考虑和不考虑几何非线性两种,,
,
情况进行对比计算计算结果表明几何非线性对变截面空心墩的影响随着墩高的增加而增大但其增大的幅度不是很大当墩的长细比较大时几何非线性的影响不能忽略,,
。
关键词
变截面空心薄壁墩
几何非线性
能量法
瑞利里兹法
一
随着山区公路桥梁的建设跨越深谷的桥梁,
桥墩横桥向宽度为侧坡度为,
且保持不变顺桥向两,
越来越多由于山区地形复杂沟深坡陡因而修,,,
墩顶宽度为,
。
,
墩底宽度为
,
墩
建的桥墩往往很高有的甚至高达,,
。
对于
高为
,
墩的壁厚均为。
设桥墩混凝土弹性模量,
墩的设计计算以往多采用传统的以弹性理论为基础的设计计算方法来分析墩的内力和变形对于长细比较小的低墩并不会引起很大的误差,,。
在空心墩的墩顶和墩底会有一定的加厚墩,
,
同时为了保证空心墩底局部稳定性每隔一定高,
,
度要设一道横隔板在计算中将桥墩简化为下端固结上端自由的悬臂梁。
。
但对于长细比较大的高墩在很大的压弯荷载作用下则可能引起较大的误差,
文献幻已针对等,
设墩顶有
ansys非线性分析指南
ANSYS非线形分析指南 基本过程
非线性结构分析
非线性结构的定义
在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木 架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。 (看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显 示了非线性结构的基本特征--变化的结构刚性.
图1─1 非线性结构行为的普通例子
非线性行为的原因
引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触)
许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中), 也可能由某种外部原因引起(如在
ANSYS材料非线性分析
【分享】ANSYS7.0超弹材料的定义-新的曲线拟合功能--摘自ansys用户专区 几何非线性
几何非线性不受敛主要原因
1.网格质量,特别是warpage 2.约束方程,少用刚性连接 3.收敛准则,可适当加大容差 4.荷载步设置,可适当加大步数
最近碰到一个对我来说很意外的问题: 如果确实如此希望大家以后小心
大家知道定义接触后会自动生成一组实常数,
前几天我碰到一个问题,需定义超过10组实常数,接触对很多,好像有20多处, 按照常规步骤划分完所有网格,当时因为有一个实常数参数没确定, 便预留了最后一组(第10组)实常数里面的参数为空, 接下来就定义了所有的接触对,由于所有接触对里的设置一样,ANSYS在我保存db完重新打开后
便把我所有的接触对综合成一个了!
接下来我就把第十组实常数里面的参数补上了,但在求解时却提示我该实常数同时被两种单元(包括CNTACT单元) 同时占用,出现错误!!
检查了半天才发现自动生成的接触对实常数把第10组实常数也占用了! 我实在没找到什么好的解决办法,
只得把接触对删除了重新定义,那可是上百多个面的选取过程,痛苦不堪简直! ANSYS里接触对面的选取时还不能针对Component操作!
ANSYS7.
ansys非线性结构分析
为初学ansys非线性的学者提供基础知识和实例
目 录
非线性结构分析的定义 1
非线性行为的原因 1
非线性分析的重要信息 3
非线性分析中使用的命令 8
非线性分析步骤综述 8
第一步:建模 9
第二步:加载且得到解 9
第三步:考察结果 16
非线性分析例题(GUI方法) 20
第一步:设置分析标题 21
第二步:定义单元类型 21
第三步:定义材料性质 22
第四步:定义双线性各向同性强化数据表 22
第五步:产生矩形 22
第六步:设置单元尺寸 23
第七步:划分网格 23
第八步:定义分析类型和选项 2
结构非线性分析ABAQUS
《工程结构非线性》作业
学院: 土 木 工 程 学 院 专业: 结 构 工 程 姓名: 汪 洋 学号: S10011056
教师: 方志(教授)
目 录
作业……………………………………………………………………………………………3 1 偏压柱的跨中最大挠度的解析解………………………………………………………………3 2用有限元软件ABAQUS建立题中所给的弯压柱的力学模型,并计算跨中最大挠…………4 2.1 给出一个实例………………………………………………………………………………4 2.2 确定材料的本构模型………………………………………………………………………4 2.3 建立有限元模型……………………………………………………………………………5 2.4 模拟结果分析对比…………………………………………………………………………12 3 ABAQUS有限元软件分析的理论背景(来自ABAQUS帮助文件)………………………14 4 对结构几何非线性和稳定的关系进行讨论……
简单非线性电阻电路分析
第六章 简单非线性电阻电路分析
由电压源、电流源和电阻元件构成的电路,称为电阻电路。由独立电源和线性电阻构成的电阻电路,称为线性电阻电路,否则称为非线性电阻电路。分析非线性电阻电路的基本依据仍然是 KCL、KVL 和元件的VCR。非线性电阻电路的一般分析方法已超出本课程的范围。本书只讨论简单非线性电阻电路的分析,为学习电子电路打下基础。
§6-1 非线性电阻元件
电压电流特性曲线通过u-i平面坐标原点直线的二端电阻,称为线性电阻;否则称为非线性电阻。按照非线性电阻特性曲线的特点可以将它们进行分类。其电压是电流的单值函数的电阻,称为流控电阻,用u=f(i)表示;其电流是电压的单值函数的电阻,称为压控电阻,用i=g(u)表示。
图6-1
图(a)所示隧道二极管是压控电阻。 图(b)所示氖灯是流控电阻。
图(c)所示普通二极管既是压控电阻,又是流控电阻。 图(d)所示理想二极管既不是流控电阻,又不是压控电阻。
其特性曲线对称于原点的电阻,称为双向电阻;否则称为单向电阻。图(b)所示氖灯是双向电阻,图(a)、(c)、(d)所示隧道二极管、普通二极管和理想二极管都是单向电阻。单向性的电阻器件在使用时必须注意它的正负极性,不能任意交换使用。
理想二极管是