六年级圆形阴影周长图形题
“六年级圆形阴影周长图形题”相关的资料有哪些?“六年级圆形阴影周长图形题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“六年级圆形阴影周长图形题”相关范文大全或资料大全,欢迎大家分享。
六年级组合图形、圆形、阴影部分面积
专题:圆与求阴影部分面积 求下面图形中阴影部分的面积。 姓名: 小圆半径为3厘米,大圆半径为10,问:空白部分甲比乙的面积多多少厘米? 正方形面积是7平方厘米。 1/7
已知直角三角形面积是12平方厘米,求阴影部分的面积。 图中圆的半径为5厘米,求阴影部分的面积。 2/7
已知AC=2cm,求阴影部分面积。 正方形ABCD的面积是36cm2 例21.图中四个圆的半径都是1厘米, 求阴影部分的面积。 一个正方形和半圆所组成的图形,其中P为半大正方形的边长为6厘圆周的中点,Q为正方形一边上的中点,求阴米,小正方形的边长为4影部分的面积。 厘米。求阴影的面积。 3/7
完整答案 例1解:这是最基本的方法: 圆面积减去等腰直角三角形的面积, ×-2×1=1.14(平方厘米) 例2解:这也是一种最基本的方法用正方形的面积减去 圆的面积。 设圆的半径为 r,因为正方形的面积为7平方厘米,所以 =7, 所以阴影部分的面
小学六年级数学求阴影面积与周长
小学六年级数学求阴影面积与周长
例1.求阴影部分的面积。(单位:厘米) 解:这是最基本的方法: 圆面积减去等腰直角三角形的面积,
×-2×1=1.14(平方厘米)
例2.正方形面积是7平方厘米,求阴影部分的面积。(单位:厘米)
解:这也是一种最基本的方法用正方形的面积减去
圆的面积。
设圆的半径为 r,因为正方形的面积为7平方厘米,所以
=7,
所以阴影部分的面积为:
7-=7-×7=1.505平方厘米
例3.求图中阴影部分的面积。(单位:厘米) 解:最基本的方法之一。用四个 圆组成一个圆,用正方形的面积减去圆的面积,
所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。(单位:厘米)
解:同上,正方形面积减去圆面积,
16-π()=16-4π
=3.44平方厘米
例5.求阴影部分的面积。(单位:厘米
)
解:这是一个用最常用的方法解最常见的题,为方便起见,
我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,
π()×2-16=8π-16=9.12平方厘米
另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?
小学六年级数学求阴影部分的面积和周长整理版 - 图文
10 16 3 5 4 24 41
修了 ? 只 多
73
修了28米 水渠全长?米
120只 计算圆柱的表面积和圆锥的体积
6cm
10cm 30米
6cm 43.5米 8cm
6
平行四边形 60 的面积30 平方厘米
10 30 50
6cm
六年级奥数 阴影部分的面积
第七讲 阴影部分的面积
例1求图中阴影部分的面积。(单位:厘米)(图3)
解:最基本的方法之一。用四个 圆组成一个圆,用正方形的面积减去圆的
面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例2求阴影部分的面积。(单位:厘米)(图5)
解:这是一个用最常用的方法解最常见的题,为方便起见,
们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去
方形,
π()×2-16=8π-16=9.12平方厘米
例3求阴影部分的面积。(单位:厘米)(图9)
解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长
方形,
所以阴影部分面积为:2×3=6平方厘米
例4求阴影部分的面积(单位:厘米)(图13)
解: 连对角线后将"叶形"剪开移到右上面的空白部分,凑成正方形的一半.
所以阴影部分面积为:8×8÷2=32平方厘米
例5图中圆的半径是5厘米,求阴影部分的面积。(单位:厘米)(图17)
我一个正
解:上面的阴影部分以AB为轴翻转后,整个阴影部分成为梯形减去直
角三角形,
或两个小直角三角形AED、BCD面积和。
所以阴影部分面积为:5×5÷2+5×10÷2=37
小学六年级阴影部分面积及答案完整
阴影部分面积专题
求如图阴影部分得面积.(单位:厘米)
如图,求阴影部分得面积.(单位:厘米)
3.计算如图阴影部分得面积.(单位:厘米)
4.求出如图阴影部分得面积:单位:厘米.
5.求如图阴影部分得面积.(单位:厘米)
6.求如图阴影部分面积.(单位:厘米)
7.计算如图中阴影部分得面积.单位:厘米.
8.求阴影部分得面积.单位:厘米.
9.如图就是三个半圆,求阴影部分得周长与面积.(单位:厘米)
10.求阴影部分得面积.(单位:厘米)
11.求下图阴影部分得面积.(单位:厘米)
12.求阴影部分图形得面积.(单位:厘米)
13.计算阴影部分面积(单位:厘米).
14.求阴影部分得面积.(单位:厘米)
15.求下图阴影部分得面积:(单位:厘米)
16.求阴影部分面积(单位:厘米).
17.求阴影部分得面积.(单位:厘米)
☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆参考答案与试题解析
1.求如图阴影部分得面积.(单位:厘米)
考点组合图形得面积;梯形得面积;圆、圆环得面积.
分析阴影部分得面积等于梯形得面积减去直径为4厘米得半圆得面积,利用梯形与半圆得面积公式代入数据即可解答.
解答解:(4+6)×4÷2÷2﹣3、14×÷2,
=10﹣3、14×4÷2,
=10﹣6、28
六年级平面图形练习
1. 求图1中阴影部分的面积(图中长度单位为厘米,圆周率按3计算)
2.如图2,阴影扇形的圆心角是72°,半径为5厘米。空白部分的面积比阴影部分大多少平方厘米?
3.求图3中阴影部分的面积(图中长度单位为厘米,圆周率按3计算):
4.环形的内圆周长为157厘米,环形的宽是5厘米,则环形的面积是多少平方厘米?
图4
5. 如图5是一个直角三角形,两直角边分别是6厘米、8厘米;以三角形的三个顶点
为圆心的三个圆,半径分别是2厘米、1厘米、1厘米。求图中阴影部分的面积?
6. 如图6,一个半圆被一个直角三角形分割成四块,求阴影A的面积占阴影C、B面
积之和的几分之几?(π≈3.14)
1
7.如图7所示,平行四边形ABCD的面积是40厘米,求图中阴影部分的面积。
8.在等腰直角三角形中直角边是2分米,以两条直角边为半径在其内部画圆,如图8。阴影部分的面积是多少?
9.如图9,两个边长为3的正方形相接,图中阴影部分的面积是多少?
10.方形ABCD边长1厘米,分别以A、B、C、D为圆心,以AD、BE、CF、DG为半径画扇形,再分别连接DE、EF、FG、GH。则图10中4个弓形面积之和是多少厘米?
11.下
六年级奥数题:图形提高三(B)
青 于 蓝 教 育
图形提高(三)
【知识要点】
1.蝴蝶翅膀 2.交叉相乘
3.平行线间等底等高和平行四边形面积一半的应用 4.正方形和等腰直角三角形的应用
【精典习题】 1.如图,一长方形中画了些直线,已知其中的三块面积分 别为13平方分米、35平方分米、49平方分米,问阴影部分面积是多少?
2.长方形的长是8cm,宽是6cm,三角形AOB的面积为16cm, 求?ODC的面积。
3.如图,在长方形ABCD中,AB长8厘米,BC长15厘米, 四边形EFGH的面积是9平方厘米,那么阴影部分面积的和 是 平方厘米。
B E G C A
D
2A E 13 B 49 35 D C F 1
优秀师资 专业团队 个性辅导 青于蓝教育欢迎你!
027-86538099 86887899 86682799
青 于 蓝 教 育
4.如图所示,在平行四边形ABCD中,E、F与对角线B、D 平行,问:与?A
小学六年级求阴影部分面积试题和答案
求阴影部分面积
例 11.求阴影部分的面积。(单位:厘米) 解: 这种图形称为环形, 可以用两个同心圆 的面积差或差的一部分来求。
例 12.求阴影部分的面积。(单位:厘米) 解:三个部分拼成一个半圆面积. π(
)÷ 2=14.13 平方厘米
(π
-π
) ×
= × 3.14=3.66 平
方厘米例 13.求阴影部分的面积。(单位:厘米) 例 14.求阴影部分的面积。(单位:厘 米) 解 : 连对角线后将 " 叶形" 剪开移到右上面
的空白部分,凑成正方形的一半. 所以阴影部分面积为:8×8÷ 2=32 平方 厘米 例 15.已知直角三角形面积是 12 平方厘 米,求阴影部分的面积。 分析 : 此题比上面的题有一定难度 , 这是 " 叶形"的一个半. 解 : 设三角形的直角边长为 r ,则 解:梯形面积减去 圆面积,
(4+10)× 4例 16.求阴影部分的面积。(单位:厘米)
π
=28-4π=15.44 平方厘米 .
=12,
=6 ÷2=3π 。 圆 内 三 角 形 的 面 积 为解: [π
圆面积为:π
+π
-π
]
12÷ 2=6,= π(1
六年级奥数图形问题精选
此题全是图形题,含答案
圆和组合图形(1)
一、填空题
4.如图所示,以B
、C
为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是 厘米.(保留两位小数)
5.三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28
厘米.
此题全是图形题,含答案
6.如右图,阴影部分的面积为2平方厘米,等腰直角三角形的面积
7.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是 度.
8.图中扇形的半径OA=OB=6厘米. AOB 45, AC垂直OB于C,那么图中阴影部分的面积是 平方厘米.( 3.14)
9.右图中正方形周长是20厘米.图形的总面积是 平方厘米.
10.在右图中(单位:厘米),两个阴影部分面积的和是 平方厘米.
此题全是图形题,含答案
二、解答题
11. ABC是等腰直角三角形. D是半圆周的中点, BC是半圆的直径,已知: AB=BC=10,那么阴影部分的面积是多少?(圆周率 3.14)
12.如图,半圆S1的面积是14.13平方厘米,圆S2的面积是19.625平方厘米.那么长方形(阴影部分的面积)是多少平方厘米?
13.如图,已知圆心是O,半径r=
六年级上册数学《圆的周长》说课稿
《圆的周长》说课稿
一.说教材
(一)教材的内容:义务教育课程标准实验教科书人教版六年级上册《圆的周长》。
(二)教材的地位及作用:
圆的周长是在学生知道了周长的含义,会计算长方形.正方形周长,学习了圆的认识的基础上进行教学的。这部分知识的学习不仅对旧知识加以巩固,也是为以后学习圆的面积,学习圆柱和圆锥打下了基础。
(三)教学目标
1.知识目标:在具体情景中让学生理解圆的周长和圆周率的含义,探索圆的周长计算公式,能正确计算圆的周长。
2.能力目标:让学生通过观察.猜想.讨论.自主探究等教学活动过程,培养学生初步分析.比较.推理能力。
3.情感目标:通过探讨圆周率.推导圆周长的计算公式,对学生进行唯物主义辩证法的启蒙教育,通过介绍我国古代数学家祖冲之,对学生进行爱国主义教育。
(四)教学重点:理解和掌握圆周长的计算公式。
(五)教学难点:理解圆周率的意义,探索圆周长的计算公式。
(六)教学准备:教具:多媒体课件、实验记录表
学具:圆形物品、圆形纸片、画有圆的白纸、直尺、绳子
二.学情分析
学生已经认识了周长的含义,并学习了长方形的周长的计算。教学圆的周长可通过化曲为直的方法进行教学。另外,我们也学习了圆的认识,并且圆是日常生活中常见的图形,可通过直观演示.实际操作帮助学生