曲线的轨迹方程怎么求
“曲线的轨迹方程怎么求”相关的资料有哪些?“曲线的轨迹方程怎么求”相关的范文有哪些?怎么写?下面是小编为您精心整理的“曲线的轨迹方程怎么求”相关范文大全或资料大全,欢迎大家分享。
求曲线轨迹方程的常用方法
高考数学专题:求曲线轨迹方程的常用方法
张昕
陕西省潼关县潼关高级中学 714399
求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1) 直接法:直接法就是将动点满足的几何条件或者等量关系,直
接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质.
(2) 定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、
双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定义法求方程要善于抓住曲线的定义特征.
(3) 代入法:根据相关点所满足的方程,通过转换而求动点的轨迹
方程.这就叫代入法.
(4) 参数法:若动点的坐标(x,y)中的x,y分别随另一变量的
变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程.
(5) 几何法:根据曲线的某种几何性质和特征,通过推理列
《圆锥曲线—轨迹方程》
2010届高考数学复习 强化双基系列课件
《圆锥曲线 -轨迹方程》
基本知识概要:一、求轨迹的一般方法: 1.直接法:如果动点运动的条件就是一些几何量的 等量关系,这些条件简单明确,易于表述成含x,y的 等式,就得到轨迹方程,这种方法称之为直接法。 用直接法求动点轨迹一般有建系,设点,列式,化简, 证明五个步骤,最后的证明可以省略,但要注意 “挖”与“补”。 2.定义法:运用解析几何中一些常用定义(例如 圆锥曲线的定义),可从曲线定义出发直接写出轨 迹方程,或从曲线定义出发建立关系式,从而求出 轨迹方程。
3.代入法:动点所满足的条件不易表述或求出,但形 成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而 有规律的运动,且动点Q的轨迹为给定或容易求得, 则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方 程,然而整理得P的轨迹方程,代入法也称相关点法。 4.参数法:求轨迹方程有时很难直接找到动点的横 坐标、纵坐标之间的关系,则可借助中间变量(参 数),使x,y之间建立起联系,然而再从所求式子中 消去参数,得出动点的轨迹方程。
5.交轨法:求两动曲线交点轨迹时,可由方程直接 消去参数,例如求两动直线的交点时常用此法,也 可以引入参数来建立
求轨迹方程的十种技法
篇一:高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法
轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB?6,直线AM,BM相交于M,且它们的斜率之积是
4
,求点M 的轨迹方程。 9
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(?3,0),B(3,0),设点M的坐标为(x,y),则直线AM的斜率kAM?
yy(x??3),直线BM的斜率kAM?(x?3) 由已知有x?3x?3
yy4
??(x??3) x?3x?39
x2y2
化简,整理得点M的轨迹方程为??1(x??3)
94
练习:1.平面内动点P到点F(10,0)的距离与到直线x?4的距离之比为2,
求轨迹方程的十种技法
篇一:高中数学求轨迹方程的六种常用技法
求轨迹方程的六种常用技法
轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法
根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。
例1.已知线段AB?6,直线AM,BM相交于M,且它们的斜率之积是
4
,求点M 的轨迹方程。 9
解:以AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则A(?3,0),B(3,0),设点M的坐标为(x,y),则直线AM的斜率kAM?
yy(x??3),直线BM的斜率kAM?(x?3) 由已知有x?3x?3
yy4
??(x??3) x?3x?39
x2y2
化简,整理得点M的轨迹方程为??1(x??3)
94
练习:1.平面内动点P到点F(10,0)的距离与到直线x?4的距离之比为2,
2.1.2求动点的轨迹方程常用方法
2.1.2求曲线的方程 (求动点的轨迹方程)
上一节,我们已经建立了曲线的方程.方程 的曲线的概念.利用这两个重要概念,就可以借 助于坐标系,用坐标表示点,把曲线看成满足 某种条件的点的集合或轨迹,用曲线上点的坐 标(x,y)所满足的方程f(x,y)=0表示曲线,通 过研究方程的性质间接地来研究曲线的性质.这 就是我们反复提到的坐标法。
上一节,我们已经建立了曲线的方程.方程 的曲线的概念.利用这两个重要概念,就可以借 助于坐标系,用坐标表示点,把曲线看成满足 某种条件的点的集合或轨迹,用曲线上点的坐 标(x,y)所满足的方程f(x,y)=0表示曲线,通 过研究方程的性质间接地来研究曲线的性质.这 就是我们反复提到的坐标法。
点M
按某中规律运动几何意义
曲线C
坐标(x, y )
x, y的制约条件
“数形结合” 数学思想的 基础
代数意义
方程f ( x, y) 0
数学中,用坐标法研究几何图形的知识形 成的学科叫做解析几何。解析几何主要研究的 问题是: (1)根据已知条件,求出表示曲线的方程; (2)通过曲线的方程,研究曲线的性质。
例1.设A、B两点的坐标是(-1,-1),(3,7), 求线段AB的垂直平分线的方程.
例1.设A、B两点的坐标是(-1,-1
圆锥曲线轨迹方程经典例题
轨迹方程经典例题
一、轨迹为圆的例题:
1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为
1,求点M的轨迹方程;(一般地:必修2课2本P144B组2:已知点M(x,y)与两个定点M1,M2的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m?1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆
BMA(x?1)2?y2?1上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23。 (1)求圆心的P的轨迹方程;
(2)若P点到直线y?x的距离为
2,求圆P的方程。 2
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR
圆锥曲线轨迹方程经典例题
轨迹方程经典例题
一、轨迹为圆的例题:
1、 必修2课本P124B组2:长为2a的线段的两个端点在x轴和y轴上移动,求线段AB的中点M的轨迹方程:
必修2课本P124B组:已知M与两个定点(0,0),A(3,0)的距离之比为
1,求点M的轨迹方程;(一般地:必修2课2本P144B组2:已知点M(x,y)与两个定点M1,M2的距离之比为一个常数m;讨论点M(x,y)的轨迹方程(分m=1,与m?1进行讨论)
2、 必修2课本P122例5:线段AB的端点B的坐标是(4,3),端点A在圆
BMA(x?1)2?y2?1上运动,求AB的中点M的轨迹。
(2013新课标2卷文20)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为23。 (1)求圆心的P的轨迹方程;
(2)若P点到直线y?x的距离为
2,求圆P的方程。 2
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
解:设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR|.又因为R是弦AB的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR
11.5 曲线与方程及轨迹问题
(§11.5 文)(§12.5 理) 曲线与方程及轨迹问题
知识要点梳理
本节主要内容是曲线与方程的概念及轨迹方程的求法.
一.“曲线的方程”和“方程的曲线”的概念
在直角坐标系中,如果某曲线C(看作满足某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:
(1)曲线上的点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点。 那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线。 二.求曲线(轨迹)方程
求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力。
它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与
关于求圆锥曲线方程的方法
关于求圆锥曲线方程的方法 重难点归纳
一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤
定形——指的是二次曲线的焦点位置与对称轴的位置
定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0)
定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小
C' 典型题例示范讲解 18 m C 例1某电厂冷却塔的外形是如图所示的双曲线的一部
20 m 分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A' 14 m A A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端
点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m 建立坐标系并写出22 m B B' 该双曲线方程
命题意图 本题考查选择适当的坐标系建立曲线方程和解方程组的基础知识,考查应用所学积分知识、思想和方法解决实际问题的能力
知识依托 待定系数法求曲线方程;点在曲线上,点的坐标适合方程;积分法求体积
错解分析 建立恰当的坐标系是解决本题的关键 技巧与方法
难点23 求圆锥曲线方程
中国特级教师高考复习方法指导〈数学复习版〉
难点23 求圆锥曲线方程
求指定的圆锥曲线的方程是高考命题的重点,主要考查学生识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求同学们熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.
●难点磁场
x2y2?1.(★★★★★)双曲线=1(b∈N)的两个焦点F1、F2,P为双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|4b2成等比数列,则b2=_________.
2.(★★★★)如图,设圆P满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长比为3∶1,在满足条件①、②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
●案例探究
[例1]某电厂冷却塔的外形是如图所示的双曲线的一部分,绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.
(1)建立坐标系并写出该双