现代控制理论实验状态反馈
“现代控制理论实验状态反馈”相关的资料有哪些?“现代控制理论实验状态反馈”相关的范文有哪些?怎么写?下面是小编为您精心整理的“现代控制理论实验状态反馈”相关范文大全或资料大全,欢迎大家分享。
现代控制理论状态反馈和状态观测器的设计实验报告
本科实验报告
课程名称: 现代控制理论
实验项目: 状态反馈和状态观测器的设计
实验地点: 中区机房
专业班级:自动化学号:
学生姓名:
指导教师:
年 月 日
现代控制理论基础
一、实验目的
(1)熟悉和掌握极点配置的原理。 (2)熟悉和掌握观测器设计的原理。 (3)通过实验验证理论的正确性。 (4)分析仿真结果和理论计算的结果。
二、实验要求
(1)根据所给被控系统和性能指标要求设计状态反馈阵K。 (2)根据所给被控系统和性能指标要求设计状态观测器阵L。 (3)在计算机上进行分布仿真。
(4)如果结果不能满足要求,分析原因并重复上述步骤。
三、实验内容
(一)、状态反馈
状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状态反馈不但可以实现闭环系统的极点任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。 1.全部极点配置
给定控制系统的状态空间模型,则经常希望引入某种控制器,使得该系统的闭环极点移
现代控制理论状态反馈和状态观测器的设计实验报告
本科实验报告
课程名称: 现代控制理论
实验项目: 状态反馈和状态观测器的设计
实验地点: 中区机房
专业班级:自动化学号:
学生姓名:
指导教师:
年 月 日
现代控制理论基础
一、实验目的
(1)熟悉和掌握极点配置的原理。 (2)熟悉和掌握观测器设计的原理。 (3)通过实验验证理论的正确性。 (4)分析仿真结果和理论计算的结果。
二、实验要求
(1)根据所给被控系统和性能指标要求设计状态反馈阵K。 (2)根据所给被控系统和性能指标要求设计状态观测器阵L。 (3)在计算机上进行分布仿真。
(4)如果结果不能满足要求,分析原因并重复上述步骤。
三、实验内容
(一)、状态反馈
状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制作为受控系统的控制输入,采用状态反馈不但可以实现闭环系统的极点任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。 1.全部极点配置
给定控制系统的状态空间模型,则经常希望引入某种控制器,使得该系统的闭环极点移
现代控制理论实验2
河南工业大学《现代控制理论》实验报告
一、实验题目:
线性系统可控、可观测性判断
二、实验目的
1. 掌握能控性和能观测性的概念。学会用MATLAB判断能控性和能观测性。 2. 掌握系统的结构分解。学会用MATLAB进行结构分解。 3. 掌握最小实现的概念。学会用MATLAB求最小实现。
三、实验过程及结果
1. 已知系统
3 4 4 x x u 10 1
y 1 1 x
(1)判断系统状态的能控性和能观测性,以及系统输出的能控性。说明状态能 控性和输出能控性之间有无联系。 能控性判断:
A=[-3 -4;-1 0];B=[4;1];C=[-1 -1];Uc=ctrb(A,B)
求秩rank(Uc)
不满秩,可知系统是状态不可控的
能观性判断: Vo=obsv(A,C)
求秩rank(Vo)
不满秩,可知系统不可观 输出能控性判断: Uy=[C*Uc D]
求秩rank(Uy)
系统是输出可观的
可以知道,系统的状态能控性和输出能控性之间无联系。
(2) 令系统的初始状态为零,系统的输入分别为单位阶跃函数和单位脉冲函数。用MATLAB函数计算系统的状态响应和
现代控制理论实验3
河南工业大学《现代控制理论》实验报告
一、实验题目
状态反馈控制器设计
二、实验目的
1. 掌握状态反馈和输出反馈的概念及性质。
2. 掌握利用状态反馈进行极点配置的方法。学会用MATLAB求解状态反馈矩阵。 3. 掌握状态观测器的设计方法。学会用MATLAB设计状态观测器。 4. 熟悉分离定理,学会设计带有状态观测器的状态反馈系统。
三、实验过程及结果
1. 已知系统
??300??1????020?x??1?u x???????00?1???1???x3 y??0.40.26670.333(1) 求解系统的零点、极点和传递函数,并判断系统的能控性和能观测性。 传递函数模型:
A=[-03 0 0;0 2 0;0 0 -1];B=[1;1;1];C=[0.4 0.2667 0.3333];Gss=ss(A,B,C,0);Gtf=tf(Gss)
零极点的求解: *z p k+=zpkdata(Gss,’v’)
能控性判断: Uc=ctrb(A,B)
求秩rank(Uc)
满秩,可知系统可控能观性判断: Vo=obsv(A,C)
求秩rank(Vo)
满秩,可知系统可观
状态反馈的倒立摆PID控制
计算机控制理论与设计
基于LMI的单级倒立摆的状态反馈PID控制
摘要
本文以单级倒立摆为研究对象,通过物理规律得到系统的传递函数和状态方程,并结合状态反馈的概念,将约束条件转化为线性矩阵不等式求解反馈矩阵并得到PID控制器,最后进行MATLAB仿真得到仿真曲线进行对比分析指出该方法的优缺点。
关键字单级倒立摆PIDMATLABLMI 状态反馈
前言
倒立摆系统是一种典型的非线性的,不稳定的复杂系统。是控制理论教学与科研中研究诸如鲁棒问题、非线性系统的控制等问题的良好实验对象。同时,倒立摆系统作为机器人行走中平衡控制、火箭垂直姿态控制和卫星飞行中姿态控制的最简单模型在航空航天以及军工等领域有着广泛的用处。倒立摆可以根据摆杆数量的不同分为一级、二级和三级等,多级摆杆间采用自由连接。一级倒立摆的仿真与控制已广泛应用于教学科研,而二级倒立摆也已在大部分实验室中实现,至于三级倒立摆的控制问题则是国际上公认的难题。然而我国学者李洪兴教授在2002年实现了国际上首次四级倒立摆实物系统的控制,这是我国学者采用自己提出的理论完成世界性难题的重大科学成就。本文中以单级倒立摆为研究对象,根据物理定律进行建模得到数学模型,在此基础上进行PID控制,并通过MATLA
状态反馈的倒立摆PID控制
可做计控作业使用
基于LMI的单级倒立摆的状态反馈PID控制
摘要
本文以单级倒立摆为研究对象,通过物理规律得到系统的传递函数和状态方程,并结合状态反馈的概念,将约束条件转化为线性矩阵不等式求解反馈矩阵并得到PID控制器,最后进行MATLAB仿真得到仿真曲线进行对比分析指出该方法的优缺点。
关键字单级倒立摆PIDMATLABLMI 状态反馈
前言
倒立摆系统是一种典型的非线性的,不稳定的复杂系统。是控制理论教学与科研中研究诸如鲁棒问题、非线性系统的控制等问题的良好实验对象。同时,倒立摆系统作为机器人行走中平衡控制、火箭垂直姿态控制和卫星飞行中姿态控制的最简单模型在航空航天以及军工等领域有着广泛的用处。倒立摆可以根据摆杆数量的不同分为一级、二级和三级等,多级摆杆间采用自由连接。一级倒立摆的仿真与控制已广泛应用于教学科研,而二级倒立摆也已在大部分实验室中实现,至于三级倒立摆的控制问题则是国际上公认的难题。然而我国学者李洪兴教授在2002年实现了国际上首次四级倒立摆实物系统的控制,这是我国学者采用自己提出的理论完成世界性难题的重大科学成就。本文中以单级倒立摆为研究对象,根据物理定律进行建模得到数学模型,在此基础上进行PID控制,并通过MATLAB仿真对比加入P
状态反馈的倒立摆PID控制
计算机控制理论与设计
基于LMI的单级倒立摆的状态反馈PID控制
摘要
本文以单级倒立摆为研究对象,通过物理规律得到系统的传递函数和状态方程,并结合状态反馈的概念,将约束条件转化为线性矩阵不等式求解反馈矩阵并得到PID控制器,最后进行MATLAB仿真得到仿真曲线进行对比分析指出该方法的优缺点。
关键字单级倒立摆PIDMATLABLMI 状态反馈
前言
倒立摆系统是一种典型的非线性的,不稳定的复杂系统。是控制理论教学与科研中研究诸如鲁棒问题、非线性系统的控制等问题的良好实验对象。同时,倒立摆系统作为机器人行走中平衡控制、火箭垂直姿态控制和卫星飞行中姿态控制的最简单模型在航空航天以及军工等领域有着广泛的用处。倒立摆可以根据摆杆数量的不同分为一级、二级和三级等,多级摆杆间采用自由连接。一级倒立摆的仿真与控制已广泛应用于教学科研,而二级倒立摆也已在大部分实验室中实现,至于三级倒立摆的控制问题则是国际上公认的难题。然而我国学者李洪兴教授在2002年实现了国际上首次四级倒立摆实物系统的控制,这是我国学者采用自己提出的理论完成世界性难题的重大科学成就。本文中以单级倒立摆为研究对象,根据物理定律进行建模得到数学模型,在此基础上进行PID控制,并通过MATLA
现代控制理论实验报告
实验一 线性定常系统模型
一 实验目的
1. 掌握线性定常系统的状态空间表达式。学会在MATLAB中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB实现不同模型之间的相互转换。
3. 熟悉系统的连接。学会用MATLAB确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。学会用MATLAB进行线性变换。
二 实验原理
1. 线性定常系统的数学模型
在MATLAB中,线性定常(linear time invariant, 简称为 LTI)系统可以用4种数学模型描述,即传递函数(TF)模型、零极点增益(ZPK)模型和状态空间(SS)模型以及SIMULINK结构图。前三种数学模型是用数学表达式表示的,且均有连续和离散两种类型,通常把它们统称为LTI模型。
1) 传递函数模型(TF 模型)
令单输入单输出线性定常连续和离散系统的传递函数分别为
Y(s)bmsm?bm?sm????b1s?b0 (1-1) G(s)??nU(s)s?an?1sn?1???a1s
现代控制理论实验报告
现代控制理论实验报告
二〇一六年五月
实验一 线性定常系统模型
一 实验目的
1. 掌握线性定常系统的状态空间表达式。学会在MATLAB中建立状态空间模型的方法。
2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB实现不同模型之间的相互转换。
3. 熟悉系统的连接。学会用MATLAB确定整个系统的状态空间表达式和传递函数。
4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准型、能控标准型和能观测标准型的方法。学会用MATLAB进行线性变换。
二 实验内容
1. 已知系统的传递函数
G(s)?4 2s(s?1)(s?3)(1)建立系统的TF或ZPK模型。
(2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函数tf( )转换为传递函数,并与原传递函数进行比较。
(3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。
(4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标准型和能观测标准型用函数tf( )转换为传递
现代控制理论实验报告(2)
现代控制理论实验报告
学院:信息科学与工程学院 专业:电气工程及其自动化 班级:0802 学号:0909081024 姓名:曾高峰 指导教师:袁艳 2010-12-31
实验1 用MATLAB分析状态空间模型
1、实验设备
PC计算机1台,MATLAB软件1套。 2、实验目的
① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;
② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。 3、实验原理说明
参考教材P56~59“2.7 用MATLAB分析状态空间模型” 4、实验步骤
① 根据所给系统的传递函数或A、B、C矩阵,依据系统的传递函数阵和状态空间表达
式之间的关系式,采用MATLAB编程。
② 在MATLAB界面下调试程序,并检查是否运行正确。 题1.1 已知SISO系统的传递函数为
s2?5s?8g(s)?4
s?2s3?6s2?3s?9(1)将其输入到MATLAB工作空间; (2)获得系统的状态空间模型。 1.
num=[1,5,8];den=[1,2,6,3,9];G=tf(num