立体几何教学设计及反思

“立体几何教学设计及反思”相关的资料有哪些?“立体几何教学设计及反思”相关的范文有哪些?怎么写?下面是小编为您精心整理的“立体几何教学设计及反思”相关范文大全或资料大全,欢迎大家分享。

空间立体几何教学设计与反思

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高中数学教学设计与反思

江西省龙南中学:张国辉

空间几何体的三视图及其表面积和体积

【教学目标】 一、知识目标

熟练掌握已知空间几何体的三视图如何求其表面积和体积。 二、能力目标

先介绍由空间三视图求其表面积和体积,然后引导学生讨论和探讨问题。

三、德育目标

1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力。 2.通过研究性学习,培养学生的整体性思维。 【教学重点】

观察、实践、猜想和归纳的探究过程。 【教学难点】

如何引导学生进行合理的探究。

【教学方法】

电教法、讲述法、分析推理法、讲练法 【教学用具】 多媒体、实物投影仪 【教学过程】

[投影]本节课的教学目标

1.熟练掌握已知空间几何体的三视图如何求其表面积和体积。 【学习目标完成过程】 一、复习提问

1.如何求空间几何体的表面积和体积(例如:球、棱柱、棱台等)? 2.三视图与其几何体如何转化? 二、新课讲解 [设置问题]

例1:(如下图1),这是一个奖杯的三视图,试根据奖杯的三视图计算出它的表面积和体积(尺寸如图1,单位:cm,π取314,结果精确到1cm3)。

[提出问题]

1.空间几何体的表面积和体积分别是什么?

2.怎样运用柱体、锥体、台体、球体的表面积与体积的公

立体几何

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

立体几何专题学科网 【例题解析】学科网 题型1 空间几何体的三视图以及面积和体积计算学科网 例1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a?b的最大值为学科网 A. 22

B. 23

C. 4

D. 25学科网 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为m,n,k,由题意得

m2?n2?k2?7,

m2?k2?6?n?1,学1?k2?a,1?m2?b,所以(a2?1)?(b2?1)?6?a2?b2?8,

学科网 ∴(a?b)2?a2?2ab?b2?8?2ab?8?a2?b2?16?a?b?4当且仅当a?b?2时取等号.例2下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是学科网 A.9π

B.10π

C.11π

D.12π学科网 解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是1,母线长是3,球的半径是1,故其表面积是2??1?3?2???1?4??1?12?,答案D.学科网 例3 已知一个正三棱锥P?ABC的主视图如图所示,若AC?BC?223, 学科网 2PC?6,则此正三

《立体几何中的向量方法》教学设计

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

《立体几何中的向量方法》教学设计(2)

【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.

【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:

(1)点到平面的距离: 1.(一般)传统方法:

利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,

??O?PdnAsin??d|AP|?d?|AP|sin?

l?P又sin??|AP?n||AP||n|

?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)

例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.

分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.

解:如图,设CD?4i,CB?4j,CG?2

《立体几何中的向量方法》教学设计

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

《立体几何中的向量方法》教学设计(2)

【教学目标】利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题. 【教学重点】:坐标法与向量法结合.

【教学难点】:适当地建立空间直角坐标系及添加辅助线. 【教学课时】:1课时 【课前准备】:课题 【教学过程设计】:

(1)点到平面的距离: 1.(一般)传统方法:

利用定义先作出过这个点到平面的垂线段, 再计算这个垂线段的长度; 2.还可以用等积法求距离; 3.向量法求点到平面的距离. 在Rt?PAO中,

??O?PdnAsin??d|AP|?d?|AP|sin?

l?P又sin??|AP?n||AP||n|

?dn?d?|AP?n||n|A?O(其中AP为斜向量,n为法向量)

例1:如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.

分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.

解:如图,设CD?4i,CB?4j,CG?2

立体几何综合复习教学案

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

立体几何综合复习教学案

徐州市贾汪区教研室高三数学中心备课组 徐州七中 宋友强

一、2008年高纲要求:

空间想象能力是对空间图形的观察、分析、抽象的能力.考查要求是:能够根据题设条件想象并作出正确的平面直观图形,并能够对空间图形进行分解和组合.

二、解读考纲:

立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降低,命题依据了《考试说明》和江苏省《普通高中课程标准》教学要求,因此在立体几何复习中依然围绕(三种)平行(三种)垂直关系的论证以及(三种)角和距离的简单计算的格局设计题目,强化以下几点: 1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。

2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。

3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。

4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性

立体几何教材分析

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

河北师范大学2012级数学专业14-15-2学期

中学学科教材分析与课堂教学实践

年 级:_ __ 2012级 学 号:___2012012823____ 姓 名:_ ___ 王宇 日 期: 2015年10月23日

高中立体几何部分的教材分析

一.教材分析的理论

1.教材分析的内容

立体几何是研究三维空间中物体的形状、大小和位置关系的一门数学学科,而三维空间是人们生存发展的现实空间。所以,学习立体几何对我们认识、理解现实世界,更好地生存与发展具有重要的意义。《立体几何初步》这部分内容,是在义务教育阶段“空间与图形”课程的延续与发展,教材的编写力图凸显《普通高中数学课程标准》对立体几何的教学要求,通过直观感知、操作确认、思辩论证、度量计算等方法,以帮助学生实现逐步形成空间想像能力这一教学目的。

本文研究的是普通高中课程标准实验教科书《数学2》的立体几何部分。 2.教材分析的方法

教材分析的方法,经常沿用的有知识分析法,心理分析法和方法论分析法。 (1)知识分析法。知识分析首先要确定教材中的一般知识、重要知识、重点知识和扩展、应用性知识等,进而根据这些知识的内在联系,形成知识网络,必要时整理成知识

如何学好立体几何

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

2 0 1 3年

第2 1期

S C I E N C E&T E C HN O L OG Y I N F O R MA T I O N

o教学研究0

科技信息

如何学好立体几何邓贵元 (上杭县才溪中学,福建上杭 3 6 2 3 0 0 )立体几何研究的对象是空间图形 .学习立体几何是把空间图形画最后以符号语言严谨,规范简洁地进行表达。 在平面上进行研究 .这给立体几何的学习增加了难度 .如何突破平面三种数学语言 .尤其重要的是符号语言的运用 .在几何计算和推思维限制,再现空间的想象思维,是学生学习时的最大难点。要学好立理论证中要求学生要养成运用符号语言的习惯 .这样可使解题过程简体几何关键应注意以几点。 洁清晰、严谨规范。掌握好这三种数学语言,能形成正确运用数学语言进行数学交流表达的能力。

1明确学习目标

立体几何的初步学习,将从对空间几何体的整体观察人手,认识空间几何图形的结构特征,需要学生采用直观感知、操作确认、思维辩在学习立体几何过程中,学生可以利用笔、直尺、书之类的东西 . 证、度量计算等方法认识和探索几何图形及其性质,注重培养和发展甚至用手掌、手指、教室中的桌椅、黑板等构建出一个空间图形的框空间想象能力推理论证能力运用图形语言进行交流的

立体几何(几何法)—线面角

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

立体几何(几何法)—线面角

例1(本小题满分12分)(注意:在试题卷上作答无效) .........

如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面

PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。

(Ⅰ)证明:PC?平面BED;

(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。

【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所

C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.

设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故

23

PC=23,EC=3,FC=2, PCAC

从而FC=6,EC=6.

PCAC

因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.

PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.

BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所

《立体几何》专题(文科)

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

高考数学重点专题

2008届高三文科数学第二轮复习资料

——《立体几何》专题

一、空间基本元素:直线与平面之间位置关系的小结.如下图:

二、练习题:

1. 1∥ 2,a,b与 1, 2都垂直,则a,b的关系是

A.平行 B.相交 C.异面 D.平行、相交、异面都有可能

2.三棱柱ABC—A1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥B—APQC的体积是 A.

1112

V B.V C.V D.V 2343

B1

1 3.设 、 、 为平面, m、n、l为直线,则m 的一个充分条件是

A. , l,m l B. m, , C. , ,m D.n ,n ,m 4.如图1,在棱长为a的正方体ABCD A1B1C1D1中, P、Q是对角

D

高考数学重点专题

a

,则三棱锥P BDQ的体积为 2

333 B

C

D.不确定 A

线A1C上的点,若PQ

5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1Q B

立体几何(几何法)—线面角

标签:文库时间:2024-12-14
【bwwdw.com - 博文网】

立体几何(几何法)—线面角

例1(本小题满分12分)(注意:在试题卷上作答无效) .........

如图,四棱锥P?ABCD中,底面ABCD为菱形,PA?底面

PABCD,AC?22,PA?2,E是PC上的一点,PE?2EC。

(Ⅰ)证明:PC?平面BED;

(Ⅱ)设二面角A?PB?C为90,求PD与平面PBC所成角的大小。

【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所

C?EBAD以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.

设AC∩BD=F,连结EF.因为AC=22, PA=2,PE=2EC,故

23

PC=23,EC=3,FC=2, PCAC

从而FC=6,EC=6.

PCAC

因为FC=EC,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠PAC=90°, 由此知PC⊥EF.

PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED. (2)在平面PAB内过点A作AG⊥PB,G为垂足. 因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC. 又平面PAB∩平面PBC=PB, 故AG⊥平面PBC,AG⊥BC.

BC与平面PAB内两条相交直线PA,AG都垂直,故BC⊥平面PAB,于是BC⊥AB,所