直线平面平行的判定及其性质教学设计
“直线平面平行的判定及其性质教学设计”相关的资料有哪些?“直线平面平行的判定及其性质教学设计”相关的范文有哪些?怎么写?下面是小编为您精心整理的“直线平面平行的判定及其性质教学设计”相关范文大全或资料大全,欢迎大家分享。
(试题2)2.2直线、平面平行的判定及其性质
高中数学 必修二
第1题. 已知 a, m, b,且m// ,求证:a//b.
答案:证明:
m// m//a a//b. a 同理 m//b
m
第2题. 已知: b,a// ,a// ,则a与b的位置关系是( ) A.a//b C.a,b相交但不垂直
答案:A.
第3题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA BF∶FD,求证:EF//平面PBC.
B.a b
D.a,b异面
答案:证明:连结AF并延长交BC于M.连结PM,
高中数学 必修二
∵AD//BC,∴
BFFD
MFFA
,又由已知
PEEA
BFFD
,∴
PEEA
MFFA
.
由平面几何知识可得EF//PM,又EF PBC,PM 平面PBC,
∴EF//平面PBC.
第4题. 如图,长方体ABCD A1B1C1D1中,E1F1是平面A1C1上的线段,求证:E1F1//平面AC.
答案:证明:如图,分别在AB和CD上截取AE A1E1,DF D1F1,连接EE1,FF1,
EF.
∵长方体AC1的各个面为矩形,
∴A1E1平行且等于AE,D1F1平行且等于DF,
故四边形AEE1A1,DFF1D1为平行四边形.
直线、平面平行的判定与性质
考点3 直线、平面平行的判定与性质
1.(徐州市2014届高考信息卷)如图,在梯形ABCD中,AB//CD,AD DC CB a, ABC 60o.平面ACEF 平面ABCD,四边形ACEF是矩形,点M在线段EF上.
(1)求证:BC 平面ACEF;
(2)当FM为何值时,AM 平面BDE?证明你的结论.
zl066
第1题图
【考点】线面垂直的判定定理;线面平行的判定定理.
【解】(1)证明:由题意知,ABCD为等腰梯形,且AB
2a,AC, 所以AC BC,
又平面ACEF 平面ABCD,平面ACEF 平面ABCD AC,
所以BC 平面ACEF. …………………6分
,AM 平面BDE. …………………8分 在梯形ABCD中,设AC BD N,连结EN,则CN:NA 1:2,
(2
)当FM
因为FM
,EF AC , ,又EM AN, 3
所以四边形EMAN为平行四边形,…………11分
所以AM NE,
又NE 平面BDE,AM 平面BDE,
所以AM 平面BDE. …………………14分
所以EM
AN=
zl067
第1题图
2. (江苏省南通市2015届高三第一次模拟考试数学试题)如图,在直三棱柱ABC A
直线、平面平行的判定与性质
考点3 直线、平面平行的判定与性质
1.(徐州市2014届高考信息卷)如图,在梯形ABCD中,AB//CD,AD DC CB a, ABC 60o.平面ACEF 平面ABCD,四边形ACEF是矩形,点M在线段EF上.
(1)求证:BC 平面ACEF;
(2)当FM为何值时,AM 平面BDE?证明你的结论.
zl066
第1题图
【考点】线面垂直的判定定理;线面平行的判定定理.
【解】(1)证明:由题意知,ABCD为等腰梯形,且AB
2a,AC, 所以AC BC,
又平面ACEF 平面ABCD,平面ACEF 平面ABCD AC,
所以BC 平面ACEF. …………………6分
,AM 平面BDE. …………………8分 在梯形ABCD中,设AC BD N,连结EN,则CN:NA 1:2,
(2
)当FM
因为FM
,EF AC , ,又EM AN, 3
所以四边形EMAN为平行四边形,…………11分
所以AM NE,
又NE 平面BDE,AM 平面BDE,
所以AM 平面BDE. …………………14分
所以EM
AN=
zl067
第1题图
2. (江苏省南通市2015届高三第一次模拟考试数学试题)如图,在直三棱柱ABC A
《直线与平面平行的判定》教学设计
《直线与平面平行的判定》教学设计
一、课题分析:
本节内容选自人教版A版必修2第二章第二节直线、平面平行的判定及其性质》的第一课时,是学习了点、线、面的位置关系以后,进一步研究直线与平面的位置关系。平行关系是本章的重要内容,线面平行是平行关系的初步,也是面面平行判定的基础,而且还映射着线面垂直的有关内容,具有承上启下的作用。因此本节内容具有承前启后的作用,地位至关重要.
二、三维目标:
(一)知识与技能
1、通过直观感知.操作确认,理解直线与平面平行的判定定理并能进行简单应用; 2、进一步培养学生观察、发现问题的能力和空间想像能力。 (二)过程与方法
1、启发式。以实物(门、书等)为媒体,启发、诱思学生逐步经历定理的直观感知过程;
2、指导学生进行合情推理。对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导、帮助学生合情推理、澄清概念、加深认识,正确运用。
(三)情感态度与价值观
1、让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力;
2、在培养学生逻辑思维能力的同时,养成学生办事认真仔细的习惯及合情推理的探究精神。
三、重点难点:
教学重点:直
直线与平面平行的性质(教学设计)
※教学设计
课题:直线与平面平行的性质
教材:普通高中课程标准实验教科书人教A版数学必修2§2.2.3 授课教师:湖南师大附中海口中学 李明 授课时间:2010年6月
【三维目标】
1.知识与技能
通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理.
2.过程与方法
通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力;体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程;通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度、价值观
通过主动参与、积极探究的学习过程,提高学习数学的自信心和积极性,培养合作意识和交往能力,领悟化归与转化的数学思想,提高学生分析解决问题的能力.
【教学重点与难点】
1.教学重点 直线与平面平行的性质定理.
2.教学难点 综合应用线面平行的判定定理和性质定理. 【教学过程】
教学内容 【回顾旧知】 直线与平面平行判定定理的内容. 通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行 与线面平行的相互转化做铺垫. 师生互动
【新课引入】
数学:2.2《直线、平面平行的判定及其性质》测试(新人教A版必修2
2. 2《直线、平面平行的判定及其性质》测试
第1题. 已知????a,????m,????b,且m//?,求证:a//b.
答案:证明:
????m????m//??m//a???a//b.
?????a??同理?m//b?
? bm ?? a
第2题. 已知:????b,a//?,a//?,则a与b的位置关系是( )
A.a//b B.a?b C.a,b相交但不垂直 D.a,b异面
答案:A.
第3题. 如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA?BF∶FD,求证:EF//平面PBC. P
E
D
F A B
答案:证明:连结AF并延长交BC于M.连结PM,
C BFMFPEBFPEMF???,又由已知,∴. FDFAEAFDEAFA由平面几何知识可得EF//PM,又EF?PBC,PM?平面PBC, ∴EF//平面PBC. ∵AD//BC,∴
第4题. 如图,长方体ABCD?A1B1C1D1中,E1F11上的线段,求证:E1F1//平面1是平面ACAC.
F1 D1
A1
E1 D
答案:证明:如图,分别在A A
平面与平面平行的判定与性质
平面与平面平行的判定与性质
一、选择题
1.平面α∥平面β,点A、C∈α,点B、D∈β,则直线AC∥直线BD的充要条件是() A.AB∥CDB.AD∥CB
C.AB与CD相交D.A、B、C、D四点共面
2.“α内存在着不共线的三点到平面β的距离均相等”是“α∥β”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要的条件 3.平面α∥平面β,直线aìα,P∈β,则过点P的直线中() A.不存在与α平行的直线 B.不一定存在与α平行的直线 C.有且只有—条直线与a平行 D.有无数条与a平行的直线 4.下列命题中为真命题的是() A.平行于同一条直线的两个平面平行 B.垂直于同一条直线的两个平面平行
C.若—个平面内至少有三个不共线的点到另—个平面的距离相等,则这两个平面平行. D.若三直线a、b、c两两平行,则在过直线a的平面中,有且只有—个平面与b,c均平行. 5.已知平面α∥平面β,且α、β间的距离为d,lìα,l′ìβ,则l与l′之间的距离的取值范
2018学年高中数学2.2直线平面平行的判定及其性质2.2.2平面与平面
第二章 2.2 2.2.2 直线与平面平行的性质
A级 基础巩固
一、选择题
1.在长方体ABCD-A′B′C′D′中,下列结论正确的是 ( D ) A.平面ABCD∥平面ABB′A′ B.平面ABCD∥平面ADD′A′ C.平面ABCD∥平面CDD′C′ D.平面ABCD∥平面A′B′C′D′
[解析] 长方体ABCD-A′B′C′D′中,上底面ABCD与下底面A′B′C′D′平行,故选D.
2.下列命题正确的是 ( D )
①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行; ②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行; ③一个平面内任何直线都与另外一个平面平行,则这两个平面平行; ④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行. A.①③
B.②④
C.②③④
D.③④
[解析] 如果两个平面没有任何一个公共点,那么我们就说这两个平面平行,也即是两个平面没有任何公共直线.
对于①:一个平面内有两条直线都与另外一个平面平行,如果这两条直线不相交,而是平行,那么这两个平面相交也能够找得到这样的直线存在.
对于②:一个平面内有无数条直线都与另外一个平面平行,同①.
对于③:一个平
直线与平面平行的判定教案..
[键入文字]
直线与平面平行的判定
一、教学内容分析:
本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认,归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与
平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分
析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数
学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的
学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维
能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画
空间中直线平面平行的判定及其性质专题复习课修改前教案
高三数学教案案
专题复习:空间中直线、平面平行的
判定及其性质(修改前教案) 环节二:典例精析:
讲解例1(此例题的目的是让学生初步学会在要证明平行的平面内讲解例2(此例题的目的是让学生初步学会利用线面平行的性质定理证明线线平行的方法,处理方法同例1)
学习目标:
1.理解线面平行、面面平行的判定及性质定理,并会灵活
应用。
2.会进行空间线面平行位置关系的转化。
3.培养学生逻辑推理能力,并能规范的书写论证步骤。
教学过程:
环节一:内容回顾:由教师向学生就下面六个问题向学生提问: 直线与平面有哪几种位置关系:
平面与平面有哪几种位置关系:
直线与平面平行的判定定理的内容:
面面平行的判定定理的内容:
直线与平面平行的性质定理的内容:
面面平行的性质定理的内容:
1 / 2
找到与平面外的直线平行的直线的方法:即构造三角形,找中位线法,处理方法以教师讲解为主,启发学生自主探究为辅。) 例1:(2013全国文改编)如图,直三棱柱ABC A1B1C1中,D,E分别是AB,BB1的中点,。 证明:BC1//平面ACD11;
A1
C 1
1
A
D
环节三:巩固练习与拓展应用
让学生做下面两个练习题巩固所学,处理方法是选两个学生上黑板做,其余学生在学案上做,然后教师启发学生用别的方法做,比如构