对磁场中双杆模型问题的解析
“对磁场中双杆模型问题的解析”相关的资料有哪些?“对磁场中双杆模型问题的解析”相关的范文有哪些?怎么写?下面是小编为您精心整理的“对磁场中双杆模型问题的解析”相关范文大全或资料大全,欢迎大家分享。
对磁场中双杆模型问题的解析
对磁场中双杆模型问题的解析
南京市秦淮中学 汪忠兵
研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。
在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。尤其是双动式导轨问题要求学生要有较高的动态分析能力
电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。
一、在竖直导轨上的“双杆滑动”问题
1.等间距型
如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:
对磁场中双杆模型问题的解析
对磁场中双杆模型问题的解析
南京市秦淮中学 汪忠兵
研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生练习的一个难点,下面就这类问题的解法举例分析。
在电磁感应中,有三类重要的导轨问题:1.发电式导轨;2.电动式导轨;3.双动式导轨。导轨问题,不仅涉及到电磁学的基本规律,还涉及到受力分析,运动学,动量,能量等多方面的知识,以及临界问题,极值问题。尤其是双动式导轨问题要求学生要有较高的动态分析能力
电磁感应中的双动式导轨问题其实已经包含有了电动式和发电式导轨,由于这类问题中物理过程比较复杂,状态变化过程中变量比较多,关键是能抓住状态变化过程中变量“变”的特点和规律,从而确定最终的稳定状态是解题的关键,求解时注意从动量、能量的观点出发,运用相应的规律进行分析和解答。
一、在竖直导轨上的“双杆滑动”问题
1.等间距型
如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:
高考模型 - 电磁场中的双杆模型
高考模型——电磁场中的双杆模型
研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。
一、在竖直导轨上的“双杆滑动”问题
1.等间距型
如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:
A、 当va=12m/s时,vb=18m/s B、当va=12m/s时,vb=22m/s
C、若导轨很长,它们最终速度必相同 D、它们最终速度不相同,但速度差恒定
【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈
磁场中的双棒问题研究
电磁感应现象中的“双棒”问题研究
黄陂一中 姜付锦
“双棒”是电磁感应现象中的一个很重要的模型,因为这个模型所涉及的物理知识有动量、能量、牛顿运动学等高中力学中的主干知识。笔者试着对这个模型进行了如下的分析与归纳,有不当的地方请各位同仁批评指正。
一、分类
1.按棒的长度可分为两类:等宽与不等宽(即一长一短) 2.按启动方式可分为三类:冲量型、恒定外力型、恒定功率型 3.按棒所处轨道的位置可分为三类:水平类、倾斜类、竖直类
4.按棒稳定后的状态可分为三类:静止类、匀速直线运动类、匀加速直线运动类 二、规律(仅讨论水平导轨,且导棒的材料相同) 2 1 1.等长“双棒”
两棒质量均为m,长度均为L,电阻均为R,
两间距足够大,所处磁场的磁感应强度为B
(1)导轨光滑
①冲量型:给棒1一个水平向右的速度v0,则最终稳定后两棒均匀速直线运动,且速度均为
2v0mv0v1?v2?,系统的动量守恒,动能损失?Ek??Q,两棒从相对运动到相对静止,相对
24滑动的距离为?s?1mv0。v?t图象如下: B2L2V1iV2i0.50010203040
电磁感应中的双杆问题
电磁感应中的“双杆问题”
电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。 下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动
当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为: E1=E2=Bdv
由闭合电路的欧姆定律,回路中的电流强度大小为:
因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=
双杆切割磁感线模型
高考物理专题复习之双杆切割磁感线模型 电磁感应动力学观点 中受力情况分析 的动量观点 导运动情况分析 能量观点 轨问题牛顿定律 平衡条件 动量定理 动量守恒 动能定理 能量守恒
一、在竖直导轨上的“双杆滑动”问题 1.等间距型
1、如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:( ) A. 当va=12m/s时,vb=18m/s B.当va=12m/s时, vb=22m/s
C.若导轨很长,它们最终速度必相同 D.它们最终速度不相同,但速度差恒定
2、如图2,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M'N'是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t
双杆切割磁感线模型
高考物理专题复习之双杆切割磁感线模型 电磁感应动力学观点 中受力情况分析 的动量观点 导运动情况分析 能量观点 轨问题牛顿定律 平衡条件 动量定理 动量守恒 动能定理 能量守恒
一、在竖直导轨上的“双杆滑动”问题 1.等间距型
1、如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s,则:( ) A. 当va=12m/s时,vb=18m/s B.当va=12m/s时, vb=22m/s
C.若导轨很长,它们最终速度必相同 D.它们最终速度不相同,但速度差恒定
2、如图2,ab和cd是两条竖直放置的长直光滑金属导轨,MN和M'N'是两根用细线连接的金属杆,其质量分别为m和2m。竖直向上的外力F作用在杆MN上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R,导轨间距为l。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与导轨所在平面垂直。导轨电阻可忽略,重力加速度为g。在t
最新电磁感应中的单杆和双杆问题(习题,答案)学习资料
电磁感应中“滑轨”问题归类例析
一、“单杆”滑切割磁感线型
1、杆与电阻连接组成回路
例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置
(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以
及ab 发生的位移x 。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电
阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀
强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r
=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,
上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求:
(1)杆ab 的最大速度;
(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab
电磁感应双杆问题
电磁感应双杆问题(排除动量范畴)
1.导轨间距相等
例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN、PQ,导轨间距离为l。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m1、m2和R1、R2,两杆与导轨接触良好,与导轨间的动摩擦因数为?。已知:杆1被外力拖动,以恒定的速度?0沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。
解法1:设杆2的运动速度为v,由于两杆运动时,两
M 2
杆间和导轨构成的回路中的磁通量发生变化,产生感
1 N 应电动势 E?Bl(v0?v) ①
E感应电流 I? ②
R1?R2v
杆2作匀速运动,它受到的安培力等于它受到的摩擦力,BlI??m2g ③ 导体杆2克服摩擦力做功的功率 P??m2gv ④ 解得 P??m2g[v0??m2gBl22(R1?R2)] ⑤
解法2:以F表示拖动杆1的外力,以I表示由杆1、杆2和导轨构成的回
电磁感应中“滑轨”问题(含双杆)归类
电磁感应中“滑轨”问题归类例析1
一、“单杆”滑切割磁感线型 例1、杆与电阻连接组成回路
例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。
(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。
例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/s2)求:
(1)杆ab的最大速度;
(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.