整数规划是线性规划吗

“整数规划是线性规划吗”相关的资料有哪些?“整数规划是线性规划吗”相关的范文有哪些?怎么写?下面是小编为您精心整理的“整数规划是线性规划吗”相关范文大全或资料大全,欢迎大家分享。

第1-2章 线性规划 整数规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产x1台甲机床和x2乙机床时总利润最大,则x1,x2

应满足

(目标函数)maxz=4x1+3x2

第1-2章 线性规划 整数规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产x1台甲机床和x2乙机床时总利润最大,则x1,x2

应满足

(目标函数)maxz=4x1+3x2

第1-2章 线性规划 整数规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第一章 线性规划

§1 线性规划

在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。

1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和C机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?

上述问题的数学模型:设该厂生产x1台甲机床和x2乙机床时总利润最大,则x1,x2

应满足

(目标函数)maxz=4x1+3x2

第8章 整数线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

管理运筹学 西北大学 经济管理学院 茹老师课件

运 筹 学西北大学经济管理学院 茹少峰 rsf00@http://www.77cn.com.cn

管理运筹学 西北大学 经济管理学院 茹老师课件

第8章整数线性规划

本章要求理解整数规划的含义;掌握两个变量的纯整数线性规划模型的图解法;掌握分枝定界 法的思想和方法;了解割平面法的原理;能够正 确引入0—1变量建立0-1线性规划模型;掌握指派 问题的求解算法;正确使用计算机软件求解整数 规划问题。

管理运筹学 西北大学 经济管理学院 茹老师课件

8.1 整数线性规划问题的提出在前面讨论的线性规划问题中,最优解可能是分数或小数,但对于某些 具体问题常要求最优解是整数。我们称这样的线性规划问题为整数线性规划 问题(Integer Linear Programming 简记为 ILP) 。 在整数规划中如果所有的变量都限制为整数,就称为纯整数规划(Pure ILP),如果仅一部分变量限制为整数,就称为混合整数规划(Mixed ILP), 整数规划的一个特例就是 0—1 规划,它的变量仅取 0 或 1。 例 8-1 投资决策问题 某部门在今后五年中可用于投资的资金总额为

数学建模实验报告3 线性规划与整数规划、

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

数学建模与实验课程 实验报告

实验名称 三、线性规划与整数规划 实验地点 日期 2014-10-28 姓名 班级 学号 成绩

【实验目的及意义】

[1] 学习最优化技术和基本原理,了解最优化问题的分类; [2] 掌握规划的建模技巧和求解方法; [3] 学习灵敏度分析问题的思维方法;

[4] 熟悉MATLAB软件求解规划模型的基本命令;

[5] 通过范例学习,熟悉建立规划模型的基本要素和求解方法。

通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB、Lingo软件进行规划模型求解的基本命令,并进行灵敏度分析。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。 【实验要求与任务】

根据实验内容和步骤,完成以下实验,要求写出实验报告(符号说明—模型的建立—模型的求解(程序)—结论)

A组

高校资金投资问题

高校现有一笔资金10

(一)线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

(一)线性规划

案例分析1

例1.10 飞乐公司经营一个回收中心,专门从事用三种废弃原材料C、P、H混合调出三种不同规格的产品ABD。根据混合时候各种材料的比例,可将该产品分为不同的等级(参照表1.12)。尽管在混合各种等级产品时允许一定的机动性,但每一等级产品中各种材料的最大值和最小值必须符合下面质量标准的规定(最大值和最小值是根据该材料的重量在该等级产品总重量中的比例来确定的)。在两种较高等级的产品中,有一种特定材料的比例是固定的。已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表1.12和表1.13,问该厂应如何安排生产,使利润收入为最大? 表1.12

产品名称 A B D

规格要求 原材料C不少于50% 原材料P不多于25% 原材料C不少于25% 原材料P不多于50%

不限

单价(元/kg)

50 35 25

回收中心可以从一些渠道定期收集到所需的固体废弃物,因此,可以获得维持稳定作业的处理量。表1.13给出了中心每天可以收集到每种材料的数量和原材料单价。

表1.13

原材料名称

C P H

每天最多供应量(kg)

100 100 60

单价(元/kg)

65 25 35

飞乐公司是绿地组织的全资公司,绿地组织

第5章 整数线性规划-习题附1

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

北京林业大学运筹学课件

1 篮球队需要选择5名队员组成出场阵容参加比赛.参 赛的8名队员的身高及擅长位置见下表:队员 身高 擅长 位置 1 1.92 中锋 2 1.90 中锋 3 1.88 前锋 4 1.86 前锋 5 1.85 前锋 6 1.83 后卫 7 1.80 后卫 8 1.78 后卫

出场阵容应满足以下条件: 1) 只能有一名中锋上场; 2) 至少有一名后卫; 3) 如1号和4号均上场, 则6号不上场; 4) 2号和8号至少有一个不出场. 问:应当选择哪5名队员上场,才能使出场队员平均身高最高? 试建立数学模型.

北京林业大学运筹学课件

1 max Z = (1.92x1 +1.90x2 +1.88x3 +1.86x4 +1.85x5 +1.83x6 +1.80x7 +1.78x8) m z in 5 x1 +x2 +x3 +x4 +x5 +x6 +x7 +x8 =5 x1 +x2 =1 st.x6 +x7 +x8 ≥1 x +x +x ≤2 1 4 6 x2 +x8 ≤1 xi = 0或1 (i = 1, 2...,8)

北京林业大学运筹学课件

2 解下列系数矩阵的最小化指派问题10 11 4 2 8 7 11 10 14 12

线性规划的对偶

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第四章 线性规划的对偶理论

一、填空题

1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的

线性规划问题与之对应,反之亦然。

2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。

5.若原问题可行,但目标函数无界,则对偶问题不可行。

6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。

﹡-

7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。

﹡﹡﹡﹡

8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。

﹡﹡﹡

10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。

11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条

2015届线性规划

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

2016高三数学 不等式与线性规划 姓名:________ 2015.11.10

........

x≥2,??139

1.实数x,y满足?x-2y+4≥0,若z=kx+y的最大值为13,则实数k=( ) A.2 B. C. D.5

24

??2x-y-4≤0,y≥-1,??

2.变量x,y满足?x-y≥2,

??3x+y≤14,

若使z=ax+y取得最大值的最优解有无穷多个,则a的取值集合是____.

14

3.下列命题正确的是( ) A.若x≠kπ,k∈Z,则sin2x+2≥4 B.若a<0,则a+≥-4

sinxa

ba

C.若a>0,b>0,则lg a+lg b≥2lg a·lg b D.若a<0,b<0,则+≥2

ab

4.函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为_____. x+y≥0,??

5.在平面直角坐标系xOy中,记不等式组?x-y≤0,

??y≤2

??u=x+y,

所表示的平面区域为D.在映射T:?

?v=x-y?

的作用下,区域D内的点(x,y)对应的象为点(u,v),则由点(u,v)所形成的平面区域的面积为_____.

6.设对任意实数x>0,y>0,

线性规划的对偶

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

第四章 线性规划的对偶理论

一、填空题

1.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的

线性规划问题与之对应,反之亦然。

2.在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。 3.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。 4.对偶问题的对偶问题是原问题_。

5.若原问题可行,但目标函数无界,则对偶问题不可行。

6.若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。相应的目标函数值将增加3k 。

﹡-

7.线性规划问题的最优基为B,基变量的目标系数为CB,则其对偶问题的最优解Y= CBB1。

﹡﹡﹡﹡

8.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX= Yb。 9.若X、Y分别是线性规划的原问题和对偶问题的可行解,则有CX≤Yb。

﹡﹡﹡

10.若X和Y分别是线性规划的原问题和对偶问题的最优解,则有CX=Y*b。

11.设线性规划的原问题为maxZ=CX,Ax≤b,X≥0,则其对偶问题为min=Yb YA≥c Y≥0_。 12.影子价格实际上是与原问题各约束条