二元函数连续性和偏导数存在的关系
“二元函数连续性和偏导数存在的关系”相关的资料有哪些?“二元函数连续性和偏导数存在的关系”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元函数连续性和偏导数存在的关系”相关范文大全或资料大全,欢迎大家分享。
二元函数连续性、偏导数存在性及可微性的讨论
编号:
Xxxxxxxx学校
本科毕业论文
二元函数连续性、偏导数存在性及可微性的讨论
院 系:数学科学系 姓 名:XXXX 学 号:XXX 专 业:XXXX 年 级:2008级 指导教师:XXX 职 称:讲师 完成日期:2012年5月
摘 要
二元函数微分学是高等数学的重点之一,理清其基本概念之间的相互关系对于认识二元函数的性质有重要的意义,只有这样才能弄清楚二元函数连续、偏导数及可微之间的关系,才能更好地加以利用.本论文将重点对它们之间的关系加以总结和探讨,并给以证明和应用举例.
本论文正文主要介绍了二元函数连续性、偏导数存在性及可微性的基本知识.对它们分别进行了总结证明和进一步讨论,还总结二元函数连续性、偏导数存在性及可微性的简单关系,并举出的例子加以论证支撑.
关键词:二元函数;连续;偏导数;可微
I I
Abstract
Binary Function Differential Calculus is one of the priorities of the higher mathematics, to cla
讨论多元函数连续、偏导数存在、可微之间的关系
讨论多元函数连续、偏导数存在、可微之间的关系
祁丽梅
赤峰学院数学与统计学院 ,赤峰 024000
摘要: 本文先是对二元函数连续性、偏导数存在及可微之间的关系就具体实例进行了讨论,然后推广到多元函数由此来总结有关多元函数微分学中关于上述三个概念之间的关系,并通过二元函数具体的实例详细加以证明。
关键词: 二元函数;多元函数;连续;偏导数;存在;可微
一、引言
多元函数微分学是数学学习中的重要内容,是微积分学在多元函数中的具体体现,多元函数的连续性,偏导数存在及可微性之间的关系是学生在数学学习中易发生的概念模糊和难以把握的重要知识点。尽管它与一元函数的微分学有许多共同点,但它们之间也同样有一些差异,这些差异是由“多元”这一特殊性引起的。
二、二元函数连续、偏导数存在、可微之间的关系
1、若二元函数f在其定义域内某点可微,则二元函数f在该点偏导数存在,反过来则不一定成立。
可微的必要条件:
若二元函数在p0?x0,y0?可微,则二元函数z?f?x,y?在p0?x0,y0?存在两个偏导数,且全微分
dz?A?x?B?y中的A与B分别是A?fx??x0,y0?与B?fy??x0,y0?
其中?x,?y为变量x,y的改变量,则?x?dx,
4.1二元关系和函数
第四章 二元关系和函数
第一节、集合的笛卡儿积与二元关系
有序对ordered pair定义:有两个元素x,y(允许x=y)按给定顺序排列组成
的二元组合称为一个有序对 ,记作<x,y>其中x是它的第一元素,y是它的第二元素。例、平面直角坐标系中的一个点的坐标就构成为一个有序 实数对,我们可用<x,y>表示。 注:有序对是讲究次序的,例<1,3>和<3,1>是表示平面 上两个不同的点,这与集合不同,{1,3}和{3,1}是两个相等的 集合。 性质1:如x y即<x,y> <y ,x>。 性质2:<x,y>=<a,b>的充要条件是x=a,y=b.
n元有序对有序对可推广到n个元素,设A1, A2, …, An是 集合,a1 A1, a2 A2, …, an An是元素,定义有 序n元组(ordered n-tuple)
数列函数极限和函数连续性
数列、函数极限和函数连续性
数列极限
定义1(??N语言):设?an?是个数列,a是一个常数,若???0,?正整数N,使得当n?N时,都有an?a??,则称a是数列?an?当n无限增大时的极限,或称?an?收敛于a,记作liman?a,或an?a?n????.这时,也称?an?的极限
n???存在.
定义2(A?N语言):若A?0,?正整数N,使得当n?N时,都有an?A,则称
??是数列?an?当n无限增大时的非正常极限,或称?an?发散于??,记作
liman???n???或an????n????,这时,称?an?有非正常极限,对于??,?的定
义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理.
1.2 数列极限求法的常用定理
定理1.2.1(数列极限的四则运算法则) 若?an?和?bn?为收敛数列,则
?an?bn?,?an?bn?,?an?bn?也都是收敛数列,且有
lim?an?bn??liman?limbn, lima?b?lima?limb.?nn?nnn??n??n??n??n??n??
?an?若再假设bn?0及limbn?0,则??也是收敛数列,且有
第4章_二元关系和函数
第四章 二元关系 和函数1 2 3 4 5 6 7笛卡尔积与二元关系 关系的运算
关系的性质 关系的闭包 等价关系和偏序关系 函数的定义和性质 函数的复合和反函数
二元关系和函数1DEFINITION 1.
笛卡尔积与二元关系
设n为一正整数,由n个元素x1,x2,…,xn按 一定顺序排列成的一个序列<x1,x2,…,xn>称 为有序n元组。(The ordered n-tuple <x1,x2,…,xn> is the ordered collection that has x1 as its first element, x2 as its second element, … , and xn as its nth element.)2
笛卡尔积与二元关系DEFINITION 2.
设A,B为集合,用A中元素为第一元素,B 中元素为第二元素,构成有序对,所有这样 的有序对组成的集合叫做A和B的笛卡尔积, 记做A×B. (Let A and B be sets. The Cartesian product of A and B, denoted by A×B, is the set of all ordere
第4章_二元关系和函数
第四章 二元关系 和函数1 2 3 4 5 6 7笛卡尔积与二元关系 关系的运算
关系的性质 关系的闭包 等价关系和偏序关系 函数的定义和性质 函数的复合和反函数
二元关系和函数1DEFINITION 1.
笛卡尔积与二元关系
设n为一正整数,由n个元素x1,x2,…,xn按 一定顺序排列成的一个序列<x1,x2,…,xn>称 为有序n元组。(The ordered n-tuple <x1,x2,…,xn> is the ordered collection that has x1 as its first element, x2 as its second element, … , and xn as its nth element.)2
笛卡尔积与二元关系DEFINITION 2.
设A,B为集合,用A中元素为第一元素,B 中元素为第二元素,构成有序对,所有这样 的有序对组成的集合叫做A和B的笛卡尔积, 记做A×B. (Let A and B be sets. The Cartesian product of A and B, denoted by A×B, is the set of all ordere
一元函数连续性的判别方法探讨
一元函数连续性的判别方法探讨
摘要
连续与一致连续的概念和关系出发,主要对一元函数在不同类型区间上函数一致连续的判定方法进行了讨论,总结和应用,并且将部分判定一元函数一致连续的方法推广到了多元函数,使大家对函数一致连续的内涵有更全面的理解和认识。 函数的一致连续性是数学分析课程中的一个重要概念,在分析问题中起着十分重要的作用.它不仅是闭区间上连续函数黎曼可积的理论基础,而且与随后的含参量积分,函数项级数等概念都有着密切的联系.因此,判定函数的一致连续性是数学分析的一项重要内容.本文对函数的一致连续性的概念进行了深入分析,对判定函数一致连续性的充分条件,充要条件作了简要概括,并给出了闭区间和开区间上函数一致连续性的判别方法.包括无穷区间上函数一致连续性的判定,并分别给出了这些定理的证明.同时,本文也总结了一致连续性的几个性质及它的应用.
关键词 连续函数 ;极限 ;有界函数 ; 一致连续 ;非一致连续
1. 引言
我们知道,函数的一致连续性是数学分析课程中的一个重要内容。函数f(x)在某区间内连续,是指函数f(x)在该区间内每一点都连续,它反映函数f(x)在该区间上一点附近的局部性质,但函数的一致连续性则反映的是函数f(x)在给定
1-9 连续函数的运算与初等函数的连续性
高等数学上册 第一章 函数与极限课件 好东西,一起分享
第九节 连续函数的运算与 初等函数的连续性一、连续函数的运算法则 二、初等函数的连续性
第一章
高等数学上册 第一章 函数与极限课件 好东西,一起分享
一、四则运算的连续性定理1:若函数 f ( x ), g( x )在点 x0处连续, f ( x) 则 f ( x ) g( x ), f ( x ) g( x ), ( g ( x 0 ) 0) g( x ) 在点 x0处也连续.
即连续函数经过四则运算后还是连续的。例如 sin x, cos x在 ( , )内连续,sin x 故 tan x , cot x , sec x , csc x 在其定义域内连续. cos x
即三角函数在其定义域内连续.
高等数学上册 第一章 函数与极限课件 好东西,一起分享
二、反函数的连续性定理2:单调递增(递减)的连续函数必有 单调递增(递减)的连续反函数.例如, y sin x在[ , ]上单调增加且连续, 2 2 故 y arcsin x 在[ 1,1]上也是单调增加且连续.
同理 y arccos x 在[ 1,1]上单调减少且连续;
y arctan x, y arc
第一章 函数、极限和连续性
第一章 函数、极限和连续性
复习要求提示:
1. 函数实质上是变量间的对应关系。函数的概念及各种性质在考研数学中一般不作为直接
的考点。但函数是微积分的基本研究对象,绝大多数知识点都直接或间接地与函数相关,相当大的一部分题目中也要直接或间接地用到函数的各种性质。
函数部分需要重点掌握的内容有:复合函数,分段函数的运算,反函数的概念及计算,函数的奇偶性,单调性,周期性和有界性。
2. 极限是这一章的主要内容,也是整个学科的理论基础。本章的首要任务是熟练掌握各种
极限的计算方法,极限计算的方法牵涉到方方面面的理论,与后续很多章节都有和重要的联系,是常考的考点。总结起来主要有:利用四则运算,利用两个重要极限,利用等价无穷小替换,利用洛必达法则,利用变量替换,分别求左右极限,数列极限转化为函数极限,利用夹逼原理,利用单调有界原理,利用泰勒公式,利用定积分的定义等。 无穷大量和无穷小量的相关问题是这一部分的另一重要内容。主要理解无穷大量和无穷小量的概念及它们的关系,重点掌握无穷小量的比较方法,理解无穷小量的高阶、同阶、等价的概念并能用等价无穷小替换计算极限;理解无穷大与无界的关系;极限存在的准则。
极限部分需重点掌握的内容有:极限的保号性,无穷小的等价替换
多元隐函数的偏导数
Lihai--
2010.03.06 Math School, Sichuan University
大学数学Ⅱ: 微积分(2)
数学学院李海
Cell phone: 13550068363email: alihai@
2010-4-23Mathematics II: Calculus (2)
Lihai--2
2010.03.06 Math School, Sichuan University
由方程确定的函数
Lihai--2010.03.06 Math School, Sichuan University
由方程确定的函数关系
Example0: 很多联系两个变量的函数关系往往由二元方程来确定, 例如:
222x+(y-b)=r
表示一个圆, 当r=C时也可以解出函数关系,如:
在绿色区域:y=b±在红色区域:x= 又如: xy=C表示一对双曲线
.
方程参数的影响
Example0+: 方程参数的赋值范围, 往往影
响函数关系的成立区域. 如果方程为:
e
x
++
C=0 则当参数C<0时, 此方程决定一个实函数:
而当参数数. 若在复数域上建立函数关系C>0时, 此方程不能决定一个实函
, 不受限制
.
Lihai--2010.03.0