常见的图像边缘检测和去噪算法
“常见的图像边缘检测和去噪算法”相关的资料有哪些?“常见的图像边缘检测和去噪算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“常见的图像边缘检测和去噪算法”相关范文大全或资料大全,欢迎大家分享。
常见图像边缘检测算法检测
不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。
在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工
基于指纹图像的去噪算法
指纹图像去噪算法的研究
Fingerprint Image Denoising Algorithm Research
指纹图像去噪算法的研究
目 录
摘 要 ................................................................ III Abstract ................................................................. IV 第1章 绪论 ............................................................... 1 1.1 研究背景及意义 ......................................................................................................... 1 1.2 国内外研究现状 ............................................................................................
基于Matlab的图像去噪算法的研究
东北石油大学本科生毕业设计(论文) 摘 要
在信息化的社会里,图像在信息传播中所起的作用越来越大。所以,消除在图像采集和传输过程中而产生的噪声,保证图像受污染度最小,成了数字图像处理领域里的重要部分。
本文主要研究分析邻域平均法、中值滤波法、维纳滤波法及模糊小波变换法的图像去噪算法。首先介绍图像处理应用时的常用函数及其用法;其次详细阐述了四种去噪算法原理及特点;最后运用Matlab软件对一张含噪图片(含高斯噪声或椒盐噪声)进行仿真去噪,通过分析仿真结果得出:均值滤波是典型的线性滤波,对高斯噪声抑制是比较好的;中值滤波是常用的非线性滤波方法,对椒盐噪声特别有效;维纳滤波对高斯噪声有明显的抑制作用;对小波系数进行阈值处理可以在小波变换域中去除低幅值的噪声和不期望的信号。
关键词:邻域平均法;中值滤波;维纳滤波;小波变换
I
东北石油大学本科生毕业设计(论文) Abstract
In the information society, the image in the information transmission is used more and more widely. Therefore, ensuring the minimum of th
图像边缘检测算法代码7
数字图像处理技术课程设计
图像边缘检测
编程实现灰度图像的几种常用的边缘检测算法,包括:梯度边缘检测算法、Roberts边缘检测算法、Sobel边缘检测算法、拉普拉斯边缘检测算法、canny边缘检测算法、Prewitt边缘检测算法和Krisch边缘检测算法。
代码:
头文件:
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ bmpFile.h
#ifndef BMP_FILE_H #define BMP_FILE_H
BYTE *Read8BitBmpFile2Img(const char *filename,int *width,int *height); bool Write8BitImg2BmpFile(BYTE *pImg,int width,int height,const char *filename); BYTE *Read24BitBmpFile2Img(const char *filename,int *width,int *height);
bool Write24BitImg2BmpFile(BYTE *pImg,int
基于matlab的图像边缘检测算法研究
本科毕业设计(论文)
检测算法研究
学 院:信息工程学院 专 业:自动化 学 号: 学生姓名: 指导教师:
二○一 年 五月 二十三日
题 目:基于matlab的图像边缘
2013届毕业设计(论文)
基于matlab的图像边缘检测算法研究
摘要
图像的边缘检测技术是数字图像处理技术的基础研究内容,是物体识别的重要基础。现有边缘检测技术在抑制噪声方面有一定的局限性,在阈值参数选取方面自适应能力很差,有待进一步改进和提高。
本论文首先介绍了图像边缘检测这个课题的意义和背景;作为理论基础,在第二章简单的介绍了传统的图像边缘检测算法,如Roberts算子、Sobel算子、Prewitt算子、Laplacian算子、LOG算子,回顾了经典的边缘检测算法,为后面介绍Canny算法作为铺垫。在第三章,结合Canny算法的基本原理、算法的三个标准、算法的思路及检测步骤提出了对Canny算子中的图像滤波平滑处理及取阈值的算法进行改进的方法,并进行了实验检验。
基于传统Canny算法中采用高斯滤波器对图像滤波平滑处理的效果有待改进,本论文引用了自适应中值滤波器,在使用Canny算法之前,对图像进行滤波,通过图3.4的结果显示,检测效果明显改善;
图像去噪方法
基于中值滤波的图像去噪方法
一、引言
图像的噪声种类有很多,脉冲噪声是其中最为常见的形式之一,比如图像在编码和传输中经过含噪声的线路或被电子感应噪声所污染时,其中使得图像降质的噪声主要是椒盐噪声,即正负脉冲噪声。脉冲噪声在图像中表现为一些灰度值很小的黑点或灰度值很大的白点,每个像点上的脉冲噪声通常在空间上是不相关的,且和原图像信号也无关。
长期以来,脉冲噪声的有效滤除一直是学者们研究的热点。图像滤波最初是以线性框架来实现的。然而,线性方法对概率分布为长拖尾的噪声滤除效果不佳,对图像的非平坦区域也很敏感,而非平坦区域在图像中是很常见的。线性滤波器会模糊边缘和结构,有时这比噪声的影响更严重。由于线性滤波器的这些缺点,人们现在常用非线性滤波器来滤除噪声。现在,虽然人类视觉的确切特性还未完全揭示出来,但许多实验表明,人类视觉系统的第一处理级是非线性的。非线性滤波器由于能够在滤除噪声的同时最大限度地保留图像信号的高频细节,使图像清晰、逼真,从而得到了广泛的应用和研究。在大量的非线性滤波器之中,基于次序统计的滤波器具有极好的稳健特性,该类非线性滤波器尽管难于分析,但概念简单易于实现,发展非常迅速,其中尤以中值滤波器最为出名。
中值滤波是广泛应用于去除脉冲
图像去噪方法
基于中值滤波的图像去噪方法
一、引言
图像的噪声种类有很多,脉冲噪声是其中最为常见的形式之一,比如图像在编码和传输中经过含噪声的线路或被电子感应噪声所污染时,其中使得图像降质的噪声主要是椒盐噪声,即正负脉冲噪声。脉冲噪声在图像中表现为一些灰度值很小的黑点或灰度值很大的白点,每个像点上的脉冲噪声通常在空间上是不相关的,且和原图像信号也无关。
长期以来,脉冲噪声的有效滤除一直是学者们研究的热点。图像滤波最初是以线性框架来实现的。然而,线性方法对概率分布为长拖尾的噪声滤除效果不佳,对图像的非平坦区域也很敏感,而非平坦区域在图像中是很常见的。线性滤波器会模糊边缘和结构,有时这比噪声的影响更严重。由于线性滤波器的这些缺点,人们现在常用非线性滤波器来滤除噪声。现在,虽然人类视觉的确切特性还未完全揭示出来,但许多实验表明,人类视觉系统的第一处理级是非线性的。非线性滤波器由于能够在滤除噪声的同时最大限度地保留图像信号的高频细节,使图像清晰、逼真,从而得到了广泛的应用和研究。在大量的非线性滤波器之中,基于次序统计的滤波器具有极好的稳健特性,该类非线性滤波器尽管难于分析,但概念简单易于实现,发展非常迅速,其中尤以中值滤波器最为出名。
中值滤波是广泛应用于去除脉冲
改进的中值滤波算法在图像去噪中的应用
第32卷第4期2011年7月
文章编号:1002 2082(2011)04 0678 05
应 用 光 学
JournalofAppliedOpticsVol 32No.4Jul 2011
改进的中值滤波算法在图像去噪中的应用
赵高长,张 磊,武风波
1
1
2
(1.西安科技大学理学院,陕西西安710054;2.西安科技大学通信与信息工程学院,陕西西安710054)
摘 要:针对标准中值滤波方法存在的不足,结合均值思想提出两种改进的中值滤波算法,即加权快速中值滤波算法和加权自适应中值滤波算法,MATLAB实验证实两种方法均能更好地保存原始图像的细节和边缘。比较两种新方法得出以下结论:加权改进中值滤波算法对低密度的脉冲噪声去噪效果明显,对于高密度脉冲噪声去噪效果不理想,但能大大提高中值滤波的运行速度,对数字图像实时处理意义很大;加权自适应中值滤波算法能够有效地消除被污染图像中的高密度脉冲噪声,较标准中值滤波具有更优良的滤波性能,较加权快速中值滤波算法在去噪方面有更好的鲁棒性。
关键词:脉冲噪声;中值滤波;加权自适应中值滤波算法;加权快速中值滤波算法
中图分类号:TN209;TP391.41 文献标志码:A
Applicatio
数字图像处理-图像去噪方法
图像去噪方法
一、引言
图像信号在产生、传输和记录的过程中,经常会受到各种噪声的干扰,噪声可以理解为妨碍人的视觉器官或系统传感器对所接收图像源信息进行理解或分析的各种元素。噪声对图像的输入、采集、处理的各个环节以及最终输出结果都会产生一定影响。图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等。我们平常使用的滤波方法一般有均值滤波、中值滤波和小波滤波,他们分别对某种噪声的滤除有较好的效果。对图像进行去噪已成为图像处理中极其重要的内容。 二、常见的噪声
1、高斯噪声:主要有阻性元器件内部产生。
2、椒盐噪声:主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生泊松噪声。
3、量化噪声:此类噪声与输入图像信号无关,是量化过程存在量化误差,再反映到接收端而产生,其大小显示出数字图像和原始图像差异。
一般数字图像系统中的常见噪声主要有高斯噪声和椒盐噪声等,减少噪声的方法可以在图像空间域或在图像频率域完成。在空间域对图像处理主要有均
数字图像处理中边缘检测算法的对比研究
边缘检测 论文 毕业设计
第2期(总第153期)
2009年4月机械工程与自动化
MECHANICAL ENGINEERING & AUTOMATIONNo12
Apr1
文章编号:167226413(2009)0220043202
熊秋菊,(山东理工大学机械工程学院,255049摘要:种常用的经典边缘检测算子进行了理论分析,并通过VC++;通过对检测结果进行比较分析,得出,。关键词:算子P3911:A
0 引言
图像的边缘是图像的重要特征之一,数字图像的
边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础,其目的是精确定位边缘,同时较好地抑制噪声,因此边缘检测是机器视觉系统中必不可少的重要环节。然而,由于实际图像中的边缘是多种边缘类型的组合,再加上外界环境噪声的干扰,边缘检测又是数字图像处理中的一个难题。1 经典边缘检测算子的理论分析和比较
所谓边缘是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,两个具有不同灰度值的相邻区域之间总存在边缘。图像的边缘是图像的基本特征。边缘可以分为两种:一种被称为阶跃性边缘,它两边像素的灰度值有着显著的差别;另一种称为屋顶状边缘。
边缘检测算子是利用图像边缘的突变性质来检测边缘的。它主要分为