2017年数学二考研真题及答案
“2017年数学二考研真题及答案”相关的资料有哪些?“2017年数学二考研真题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“2017年数学二考研真题及答案”相关范文大全或资料大全,欢迎大家分享。
2010年考研数学二真题及答案
二零一○年全国研究生入学考试试题(数学二)
一选择题 1.函数f(x)?x?xx?1221?1x2的无穷间断点的个数为
A0 B1 C2 D3
2.设y1,y2是一阶线性非齐次微分方程y??p(x)y?q(x)的两个特解,若常
数?,?使?y1??y2是该方程的解,?y1??y2是该方程对应的齐次方程的解,则 A?C???1223,??,??21213 B? D????2312,???2312
,??
3.曲线y?x与曲线y?alnx(a?0)相切,则a?
A4e B3e C2e De 4.设m,n为正整数,则反常积分?A仅与m取值有关
10mln(1?x)n2xdx的收敛性
B仅与n取值有关
C与m,n取值都有关 D与m,n取值都无关
5.设函数z?z(x,y)由方程F(y,z)?0确定,其中F为可微函数,且F??0,则
xx2x?z?x?y?z?y=
Bz C?x
n(n?i)(n?j)122Ax
x??
n D?z
6.(4)lim??i?1j?1n=
A?dx?01x0(1?x)(1?y)2dy B?dx?01x01(1?x)(1?y)1(1?
2010年考研数学二真题及答案
二零一○年全国研究生入学考试试题(数学二)
一选择题 1.函数f(x)?x?xx?1221?1x2的无穷间断点的个数为
A0 B1 C2 D3
2.设y1,y2是一阶线性非齐次微分方程y??p(x)y?q(x)的两个特解,若常
数?,?使?y1??y2是该方程的解,?y1??y2是该方程对应的齐次方程的解,则 A?C???1223,??,??21213 B? D????2312,???2312
,??
3.曲线y?x与曲线y?alnx(a?0)相切,则a?
A4e B3e C2e De 4.设m,n为正整数,则反常积分?A仅与m取值有关
10mln(1?x)n2xdx的收敛性
B仅与n取值有关
C与m,n取值都有关 D与m,n取值都无关
5.设函数z?z(x,y)由方程F(y,z)?0确定,其中F为可微函数,且F??0,则
xx2x?z?x?y?z?y=
Bz C?x
n(n?i)(n?j)122Ax
x??
n D?z
6.(4)lim??i?1j?1n=
A?dx?01x0(1?x)(1?y)2dy B?dx?01x01(1?x)(1?y)1(1?
2019考研数学二真题及答案
羽冈年企国顾士罰丸生入学集増诚
I AH
E»*l
CM* I 』粽工一 ian 鼻一一 =4/ 山卜」.亞亠3. V^f (w -)
GlU^ I V - sHi J ■»- Jt tiW i - 2 ^ttr f ? - -± sifli ? . *■
_ 0 if j : _ C 1. L ! - r -址閉由
『■ etax TCdijr.層巨代.%犒jTbrW ?吨ZJ.AffiA
工F 議皿編枳甘蚩at 起見i >
內「整也 劎「帖 g 「平尹 s E»l -n.
1辭折1 r-l-.fr-ilnl^j'I -KJS
貼 I ■* i 2
▲e 扭穆孙曲程尹丄臧丄心时nil*肖潭=@4Grtr 和*"■ u 蓦怙織曲划:1 |A|i I.4J
CB-i O?J.> iXi}3LU
I 吾?l I U I FIMH 明鼻也』■衬和诽产宀卄胖严忆 >?■仙 yh'界亦沉"阳冲网£ PW I 导产FP 掃 川 + + J i-fr^t- 士此解上価一2』一」N -斗
$ L L 疋1 牛 Ji 乜 X £" f'-iu HI
2017年考研数学二真题与解析
2017年考研数学二真题
一、选择题 1—8小题.每小题4分,共32分.
?1?cosx,x?0?1.若函数f(x)??在x?0处连续,则 ax?b,x?0?11 (B)ab?? (C)ab?0 (D)ab?2 221x1?cosx12f(x)?b?f(0),要使函数在x?0处连续,【详解】lim,limf(x)?lim?lim???x?0x?0?x?0?x?0axax2a11?b?ab?.所以应该选(A) 必须满足2a2(A)ab?2.设二阶可导函数f(x)满足f(1)?f(?1)?1,f(0)??1,且f??(x)?0,则( ) (A)(C)
??1?10f(x)dx?0 (B)?f(x)dx?0
?11?1f(x)dx??f(x)dx (D)?f(x)dx??f(x)dx
0?10101【详解】注意到条件f??(x)?0,则知道曲线f(x)在??1,0?,?0,1?上都是凹的,根据凹凸性的定义,显然当x???1,0?时,f(x)??2x?1,当x??0,1?时,f(x)?2x?1,而且两个式子的等号不是处处成立,否则不满足二
2007数学二 考研真题及解析数学
文硕考研教育
2007年硕士研究生入学考试数学二试题及答案解析
一、选择题:(本题共10小题,每小题4分,共40分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(1) 当x?0时,与x等价的无穷小量是 (A) 1?ex?. (B) ln1?x. (C) 1?x?1. (D) 1?cosx. [ B ]
1?x【分析】 利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案. 【详解】 当x?0时,有1?e?x??(ex?1)~?x;1?x?1~1x; 21?cosx~1x11(x)2?x. 利用排除法知应选(B). 22在[??,?]上的第一类间断点是x =
(2) 函数f(x)?(e?e)tanxx(e?e)1x(A) 0. (B) 1. (C) ??2. (D)
?. [ A ] 2【分析】 本题f(x)为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。
【详解】 f(x)在[??,?]上的无定义点,即间断点为x =0,1,?1x1x?. 2又 lim?x
2011年数学二考研大纲
2011年数二考研大纲
2011考研数学二大纲
考试科目:高等数学、线性代数、考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
高等教学 78%
线性代数 22%
四、试卷题型结构
试卷题型结构为:
单项选择题 8小题,每小题4分,共32分
填空题 6小题,每小题4分,共24分
解答题(包括证明题) 9小题,共94分
高 等 数 学
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、
分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大
量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两
个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
2011年数二考研大纲
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基
考研数学二历年真题2001
数学二历年考研试题(2001~2012)
1
2012年全国硕士研究生入学统一考试数学二试题
一、选择题:1-8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线2
21
x x y x +=
-的渐近线条数 ( )
(A) 0 (B) 1 (C) 2 (D) 3
(2) 设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则(0)f '= ( )
(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n - (3) 设1230(1,2,3),
n n n a n S a a a a >==++++ ,则数列{}n S 有界是数列{}n a 收敛的
( )
(A) 充分必要条件 (
2006年数二考研真题答案解析
2006年硕士研究生入学考试(数学二)试题及答案解析
一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线
y?1x?4sinx 的水平渐近线方程为 y?.
55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.
4sinxx?4sinxx?1.
【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.
51?(2)设函数
?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a, x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数
f(x)在 x?0处连续,则
limf(x)?f(0)?a,
x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以
a?1. 3(3) 广义积分
???01xdx?(1?x2)22.
【分析】利用凑微分法和牛顿-莱布尼兹公式求解.
【详解】
???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1
2003-2014考研数学二历年真题及答案详解
1
2
3
4 2013年全国硕士研究生入学统一考试数学二试题
一、选择题 1—8小题.每小题4分,共32分. 1.设2)(),(sin 1cos π
αα<=-x x x x ,当0→x 时,()x α ( )
(A )比x 高阶的无穷小 (B )比x 低阶的无穷小
(C )与x 同阶但不等价无穷小 (D )与x 等价无穷小
2.已知()x f y =是由方程()1ln cos =+-x y xy 确定,则=????
??-??? ??∞→12lim n f n n (
) (A )2 (B )1 (C )-1 (D )-2
3.设???∈∈=]2,[,2),0[,sin )(πππx x x x f ,?=x
dt t f x F 0)()(则( )
(A)π=x 为)(x F 的跳跃间断点. (B)π=x 为)(x F 的可去间断点.
5 (C))(x F 在π=x 连续但不可导. (D))(x F 在π=x 可导. 4.设函数???????≥<<-=+-e x x
x e x x x f ,ln 11,)1(1)(11αα,且反常积分()dx x f ?∞+收敛,则( )
(A )2-<α (B )2>a
2006年数二考研真题答案解析
2006年硕士研究生入学考试(数学二)试题及答案解析
一、 填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)曲线
y?1x?4sinx 的水平渐近线方程为 y?.
55x?2cosx【分析】直接利用曲线的水平渐近线的定义求解即可.
4sinxx?4sinxx?1.
【详解】lim?limx??5x?2cosxx??2cosx55?x1 故曲线的水平渐近线方程为 y?.
51?(2)设函数
?1x21?3?0sintdt,x?0在x?0处连续,则a?. f(x)??x3?a, x?0?【分析】本题为已知分段函数连续反求参数的问题.直接利用函数的连续性定义即可. 【详解】由题设知,函数
f(x)在 x?0处连续,则
limf(x)?f(0)?a,
x?0?又因为 limf(x)?limx?0x?0x0sint2dtx3sinx21?lim?. x?03x23所以
a?1. 3(3) 广义积分
???01xdx?(1?x2)22.
【分析】利用凑微分法和牛顿-莱布尼兹公式求解.
【详解】
???02bd(1+x)xdx111?lim??lim22(1?x2)22b???0(1