小学数学经典几何题
“小学数学经典几何题”相关的资料有哪些?“小学数学经典几何题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学经典几何题”相关范文大全或资料大全,欢迎大家分享。
初中数学经典几何题与答案解析
经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)
G
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二)
A
P D
A
D
O
F
B
C E
B C
第 1 页 共 21 页
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、
A D
D2 A2 CC1、DD1的中点.
A1
D1 求证:四边形A2B2C2D2是正方形.(初二)
B1
C1
B2
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BCF 的延长线交MN于E、F. 求证:∠DEN=∠F.
N
A D C E B C2
C
M B
经典难题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
A O · H E B M D C 第 2 页 共 21 页
2、设MN是圆O外一直线,过O作OA⊥MN于
初中数学经典几何模型
初中数学几何模型 中点模型 【模型1】倍长 1、 倍长中线;2、倍长类中线;3、中点遇平行延长相交 AABDCBEDCFE ---------------------------------------------------------------------------------------------------------------------- 【模型2】遇多个中点,构造中位线 1、 直接连接中点;2、连对角线取中点再相连 【例1】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE. (1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长; (2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明; (3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明. DGFEABAGGFBABECDCDCE图1图2图3F 1 【例2】如图,在菱形ABCD中,点E、F分别是BC、CD上一点,连接DE、EF,且AE=AF,?DAE??BAF. (1)求证:CE=CF; (2)若?ABC?
小学数学经典思维训练题(1000多题)
1. 小数、分数,百分数转换
1、定义不同
平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。 众数:在一组数据中出现次数最多的数叫做这组数据的众数。 2、求法不同
平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。 例如:求下列数据的平均数、中位数和众数
从上面的例子中可以看出,三者之间可以相等也可以不等,它们之间无固定的大小关系。 3、个数不同
在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同
平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。例如:5孩子的平均年龄是10岁,这个10岁就是一个虚拟的数,因为它并不是指每个人的年龄就是10岁。这5个孩子有可能是8、9、10、
初中数学经典几何题(难)及答案分析全版.doc
经典难题(一)
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .
求证:CD =GF .(初二)
2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.
求证:△PBC 是正三角形.(初二)
3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、
CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二)
4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC
的延长线交MN 于E 、F . 求证:∠DEN =∠F .
A P
C D B A F
G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1
C B D
A A 1 B
F 经典难题(二)
1、已知:△ABC 中,H 为垂心(各边高线的交点),O
(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)
2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线
EB 及CD 分别交M
小学数学几何直观
一、什么是几何直观?
几何直观指的是通过“几何”的手段,达到“直观”的目的,实现“描述和分析问题”的目标。这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、形象”。因此,几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过程中发挥着重要作用。第二,几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。第三,几何直观的意义和价值主要体现在三个方面:一是有助于把复杂、抽象的问题变得简明、形象,二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。
二、对于几何直观的认识
顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;二是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来,几何直观就是依托、利用图形进行数学的思考和想象。它在本质上是一种通过图形所展
小学数学几何直观
一、什么是几何直观?
几何直观指的是通过“几何”的手段,达到“直观”的目的,实现“描述和分析问题”的目标。这里的“几何”手段主要是指“利用图形”,“直观”的目的主要是将“复杂、抽象的问题变得简明、形象”。因此,几何直观对学生而言是一种有效的学习方法,对教师而言是一种有效的教学手段,它是数形结合思想的体现,在整个数学学习过程中发挥着重要作用。第二,几何直观所利用的“图形”主要是指点、线、面、体以及由以上四要素组成的其他几何图形,在小学阶段主要有正方形、长方形、三角形、平等四边形、梯形、圆以及线段、直线、射线等。几何直观所要描述和分析的问题,不仅可以是生活问题,而且可以是数学问题。第三,几何直观的意义和价值主要体现在三个方面:一是有助于把复杂、抽象的问题变得简明、形象,二是有助于探索解决问题的思路并预测结果,三是有助于帮助学生直观地理解数学。
二、对于几何直观的认识
顾名思义,几何直观所指有两点:一是几何,在这里几何是指图形;二是直观,这里的直观不仅仅是指直接看到的东西(直接看到的是一个层次),更重要的是依托现在看到的东西、以前看到的东西进行思考、想象,综合起来,几何直观就是依托、利用图形进行数学的思考和想象。它在本质上是一种通过图形所展
解析几何100题经典大题汇编
1 4((2011巢湖一检)已知直线1l y kx =+:,椭圆E :22
21(0)9x y m m
+=>.(Ⅰ)若不论k 取何值,直线l 与椭圆E 恒有公共点,试求出m 的取值范围及椭圆离心率e 关于m 的函数式;
(Ⅱ)当k =时,直线l 与椭圆E 相交于A 、B 两点,与y 轴交于点M ,若2AM MB =uuu r uuu r ,求椭圆E 方程.
解:(Ⅰ)∵直线l 恒过定点M(0,1),且直线l 与椭圆E 恒有公共点,∴点M(0,1)在椭圆E 上或
其内部,得()22
201109m m
+≤>,解得13m m ≥≠,且.(联立方程组,用判别式法也可)当13m ≤<时,椭圆的焦点在x
轴上,e =;当3m >时,椭圆的焦点在y
轴上,e =.
∴
)()133.m e m ≤<=??>??
, (Ⅱ)
由222
119y x y m ?=+????+=??,消去y
得222(10)9(1)0m x m +++-=. 设11()A x y ,,22()B x y ,
,则12x x +=,21229(1)10
m x x m -=+②. ∵M(0,1),∴由2AM MB = 得122x x =- ③. 由①③得
2x =④. 将③④代入②得,
2
229(1)210m
小学数学几何题解答
小学数学几何题解答
梯形面积×2
导得
高
y
= (上底 + 下底)(一定). 对照正比例的判别式 = k
x
(一定),就断定:如果梯形的上、下底的长度一定,那么梯的面积和高成 正比例,所以要选填①.
【题 330】 在直角梯形中,阴影部分甲、乙面积的关系是( ).
①甲>乙 ②甲=乙 ③甲<乙 ④无法比较
【思路或解法】 甲加上大白色三角形、乙加上大白色三角形,它们是 一对同底等高的面积相等的三角形,由此可知,甲三角形=乙三角形,所以要 选择②.
【题 331】 两个完全一样的直角三角形,可以拼成一个( )形.
①平行四边形 ②长方形 ③梯形 ④等腰三角形
【思路或解法】 两个完全一样的直角三角形,既可以拼成一个长方 形,也可以拼成一个一般的平行四边形.因为长方形具有平行四边形的全部特 征,它是一个特殊的平行四边形,所以两个完全一样的直角形可以拼成一个 平行四边形.故应选择①.
【题 332】 在一个底是 24 厘米的平行四边形中,画一个三角形,如
右图,使三角形的面积等于平行四边形的面积的 1 ,BC长( )厘米.
3
① 8 ② 16 ③ 9 ④ 12
【思路或解法】 如果在平行四边中画一与平行四边形同底同高的三
角形,那么这个三角形的面积是平行四边形面积的
经典小学奥数题型(几何图形)
小学奥数平面几何五种模型(等积,鸟头,蝶形,相似,共边)
目标:熟练掌握五大面积模型等积,鸟头,蝶形,相似(含金字塔模型和沙漏模型),共边(含燕尾模型和风筝模型), 掌握五大面积模型的各种变形 知识点拨
一、等积模型
AB①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; SS两个三角形底相等,面积比等于它们的高之比;
abCD如右图S1:S2?a:b
12③夹在一组平行线之间的等积变形,如右图S△ACD?S△BCD; 反之,如果S△ACD?S△BCD,则可知直线AB平行于CD.
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);
⑤三角形面积等于与它等底等高的平行四边形面积的一半;
⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 二、鸟头定理
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.
D,E分别是AB,AC上的点如图 ⑴(或D在BA的延长线上,如图在△ABC中,E在
AC上),
则S△ABC:S△ADE?(AB?AC):(AD?AE)
DAADEEDC
世界经典数学名题
世界经典数学名题
1.不说话的学术报告
1903年10月,在美国纽约的一次数学学术会议上,请
科尔教授作学术报告。他走到黑板前,没说话,用粉笔写出2^67 – 1,这个数是合数而不是质数。接着他又写出两组数字,用竖式连乘,两种计算结果相同。回到座位上,全体会员以暴风雨般的掌声表示祝贺。证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。有人问他论证这个问题,用了多长时间,他说:―三年内的全部星期天‖。请你很快回答出他至少用了多少天?
2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西
萨·班·达依尔。这位聪明的大臣跪在国世界经典数学名题 1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。他走到黑板前,没说话,用粉笔写出2^67 – 1,这个数是合数而不是质数。接着他又写出两组数字,用竖式连乘,两种计算结果相同。回到座位上,全体会员以暴风雨般的掌声表示祝贺。证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。请你很