数学选修一圆锥曲线性质知识点
“数学选修一圆锥曲线性质知识点”相关的资料有哪些?“数学选修一圆锥曲线性质知识点”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学选修一圆锥曲线性质知识点”相关范文大全或资料大全,欢迎大家分享。
高中数学备课资料 1圆锥曲线知识点小结
- 1 -
圆锥曲线知识点小结
1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件
定点F1(?3,0),F2(3,0),在满足下列条件的平面上动点P的轨迹中,是椭圆的是( ) A.PF B.PF 1?PF2?41?PF2?6C.
D.PF1?PF2PF1?PF2?10222222?12
(2)方程(x?6)?y?(x?6)?y?8表示的曲线是_____ (3)利用第二定义
x2已知点Q(22,0)及抛物线y?42.圆锥曲线的标准方程
上一动点P(x,y),则y+|PQ|的最小值是___
x2y2(1)已知方程??1表示椭圆,则k的取值范围为____
3?k2?k(2)若x,y?R,且3x2?2y2?6,则x?y的最大值是___,x2?y2的最小值是 x2y25(3)双曲线的离心率等于,且与椭圆??1有公共焦点,则该双曲线的方程_______
942(4)设中心在坐标原点O,焦点F1、F2在坐标轴上,离心率e则C的方程为_______
3.圆锥曲线焦点位置的判断:
?2的双曲线C过点P(4,?10),
椭圆:已知方程
x2y2??1表示焦点在y轴上的椭圆,则m的取值范围是( )
m?12?m
高中数学备课资料 1圆锥曲线知识点小结
- 1 -
圆锥曲线知识点小结
1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件
定点F1(?3,0),F2(3,0),在满足下列条件的平面上动点P的轨迹中,是椭圆的是( ) A.PF B.PF 1?PF2?41?PF2?6C.
D.PF1?PF2PF1?PF2?10222222?12
(2)方程(x?6)?y?(x?6)?y?8表示的曲线是_____ (3)利用第二定义
x2已知点Q(22,0)及抛物线y?42.圆锥曲线的标准方程
上一动点P(x,y),则y+|PQ|的最小值是___
x2y2(1)已知方程??1表示椭圆,则k的取值范围为____
3?k2?k(2)若x,y?R,且3x2?2y2?6,则x?y的最大值是___,x2?y2的最小值是 x2y25(3)双曲线的离心率等于,且与椭圆??1有公共焦点,则该双曲线的方程_______
942(4)设中心在坐标原点O,焦点F1、F2在坐标轴上,离心率e则C的方程为_______
3.圆锥曲线焦点位置的判断:
?2的双曲线C过点P(4,?10),
椭圆:已知方程
x2y2??1表示焦点在y轴上的椭圆,则m的取值范围是( )
m?12?m
高中数学选修2-1圆锥曲线与方程知识点复习小结
第二章《圆锥曲线与方程》复习小结
【自主学习】
【学习目标】
1.了解圆锥曲线的实际背景,感受其在刻画现实世界和解决实际问题中的作用;
2.经历从具体情境抽象出模型的过程,掌握它们的定义、标准方程、几何图形和简单性质; 3.能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题;
4.进一步体会数形结合的思想,了解曲线与方程的关系.
【本章知识结构框图】
求曲线的方程 曲线与方程曲线的方程 画方程的曲线 求曲线的交点 几何背景圆锥曲线的概念椭圆定义 双曲线定义 抛物线定义 应用 圆锥曲线共同特征统一定义 应用 焦半径公式 圆锥曲线的方程椭圆的标准方程 双曲线的标准方程 抛物线的标准方程 应用 相离相切相交【本章知识与方法导析】
一、根据本章知识框图构建立体几何知识系统
1.曲线与方程 (1)概念: .
几何背景 圆锥曲线的性质椭圆几何性质 双曲线几何性质 抛物线几何性质 应用 圆锥曲线的弦 (2)轨迹与轨迹方程的区别 .
2.熟练掌握求轨迹方程的常见方法 试说明以下几种方法的用法及适用题型
(1)五步法(直译法)求轨迹方程,你能说出是哪
2013圆锥曲线复习课
知识指要
椭圆
知识指要yO MM F1 F x2
椭圆yF2 O F1
x
注1:总有 a>b>0, c2 = a2 - b2注2:判断椭圆标准方程的焦点在哪个轴上 的准则: 焦点在分母大的那个轴上 注3:椭圆上到焦点的距离最大和最小的点 是椭圆长轴的两个端点
知识指要1、椭圆第一定义反映的是: 椭圆上任意一 点到两焦点的距离和是2a 即: | MF1| +| MF2 | = 2a 2、椭圆第二定义反映的是:
椭圆
椭圆上任意一点到焦点的距离与到相应准
线的距离比是e。即: |
MF | e d
知识指要3、判断直线与椭圆位置关系的方法:解方程组消去其中一元得一元二次型方程 △< 0 △= 0 相离 相切
椭圆
△> 0 4、弦长公式:
相交
设直线 l与椭圆C 相交于A( x1 ,y1) ,B( x2,y2 ),则 |AB|=
1 k 2 | x1 x2 | , 其中 k 是直线的斜率
5、弦中点问题:“点差法”、“韦达定
y
yB
y
图形
.2
A12
o
.2
A2 x
B1
o
B1 方程 范围x x y y 2 21 (a>0,b>0) 1 2 2 a a b b2
. .
A1B2
x
A2
y2 x2 2 1 2 a b
(a>0,b
选修1-1圆锥曲线专题复习剪辑
※高二文科班数学课堂学习单73※
班级 姓名 小组
(二)圆锥曲线专题复习(二)
一,学习目标:
1、 全面掌握圆锥曲线的知识要点 2、 能解解决圆锥曲线的相关问题 二,自学导航:
◇知识归纳:
一、圆锥曲线的定义:
1.椭圆的定义:平面内与两个定点F1,F2的距离12轨迹叫做椭圆.这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的
距离和等于|F1F2|时,动点的轨迹就是;距离和小于|F1F2|时,动点轨迹. 2.双曲线的定义:平面内与两定点F1,F2的距离的 等于常数(小于|F1F2|)的点的轨迹叫双曲线,这两个定点叫做双曲线的 ,两焦点间的距离叫做双曲线的 .
(1)定义中常数等于|F1F2|,动点的轨迹是以. (2)如果定义中常数为0,此时动点轨迹为 (3)如果定义中常数大于|F1F2|,此时动点轨迹.. (4)在定义中,如果将“差的绝对值”改为“差”,那么点的轨迹是. 3.抛物线的定义:平面内与一定点F和一条定直线l(l不经过点F)的点的轨迹叫做抛物线,点F叫做抛物线的 ,直线l叫做抛物线的 .
特别强调:凡涉及圆锥曲线上的点
8圆锥曲线定义的应用
圆锥曲线定义的应用
一、基本知识概要
1、 知识精讲:
涉及圆锥曲线上的点与两个焦点构成的三角形,常用第一定义结合正余弦定理; 涉及焦点、准线、圆锥曲线上的点,常用统一的定义。 椭圆的定义:点集M={P| |PF1|+|PF2|=2a,2a>|F1F2|};
双曲线的定义:点集M={P|︱|PF1|-|PF2|︱=2a, (2a |F1F2|) }的点的轨迹。 抛物线的定义:到一个定点F的距离与到一条得直线L的距离相等的点的轨迹.
d
重点、难点:培养运用定义解题的意识 2、 思维方式:等价转换思想,数形结合 特别注意:圆锥曲线各自定义的区别与联系 二、例题选讲
例1 、 已知两个定圆O1和O2,它们的半径分别为1和2,且|O1O2|=4,动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆心M的轨迹方程,并说明轨迹是何种曲线。
解:以O1O2的中点O为原点,O1O2所在直线为轴建立平面直角坐标系。由|O1O2|=4有O1(-2,0),O2(2,0)。设动圆的半径为r。由动圆M与圆O1内切有|MO1|=|r-1|. 由动圆M与圆O2内切有|MO2|=r+2。∴|MO1|+|MO2|=3或|MO1|-|MO2|=-3,∵|O1O2|=4∴|MO1|-|
高中数学选修2-1圆锥曲线基本知识点与典型题举例(后附答案) -
高中数学选修2--1圆锥曲线 基本知识点与典型题举例
一、椭圆
1.椭圆的定义:
第一定义:平面内到两个定点F1、F2的距离之和等于定值2a(2a>|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
第二定义: 平面内到定点F与到定直线l的距离之比是常数e(0 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 x2y2?2?1(a?b?0) 2abx2y2?2?1(a?b?0) 2ba 顶点 对称轴 焦点 焦距 离心率 (?a,0),(0,?b) (0,?a),(?b,0) x轴,y轴,长轴长为2a,短轴长为2b F1(?c,0)、F2(c,0) F1(0,?c)、F2(0,c) 焦距为F1F2?2c(c?0), c2?a2?b2 e?c (0 ( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知?ABC的周长是16,A(?3,0),B(3,0), 则动点的轨迹方程是( ) x2y2x2y2x2y2x2y2(A)??1 (B)??1(y?0) (C)??1 (D)??1(y?0) 25162516162
圆锥曲线方程知识点总结
§8.圆锥曲线方程 知识要点
一、椭圆方程.
PF1?PF?PF?PF222?2a?F1F2方程为椭圆,?2a?F1F2无轨迹,?2a?F1F2以F1,F2为端点的线段221. 椭圆方程的第一定义:PF1PF1
⑴①椭圆的标准方程:i. 中心在原点,焦点在x轴上:xa?22yb?22?1(a?b?0)22.
.
ii. 中心在原点,焦点在y轴上:yaxb?1(a?b?0)②一般方程:Ax2?By2?1(A?0,B?0).
xa22③椭圆的标准方程:
?yb22?1的参数方程为??x?acos??y?bsin?(一象限?应是属于0????2).
⑵①顶点:(?a,0)(0,?b)或(0,?a)(?b,0).
②轴:对称轴:x轴,y轴;长轴长2a,短轴长2b. ③焦点:(?c,0)(c,0)或(0,?c)(0,c). ④焦距:F1F2?2c,c?a2?b2. ⑤准线:x??a2c或y??a2c.
⑥离心率:e?⑦焦点半径:
ca(0?e?1).
i. 设P(x0,y0)为椭圆ii.设P(x0,y0)为椭圆
xaxb2222?yb2222?1(a?b?0)上的一点,F1,F?1(a?b?0)上的一点,F1,Fa22为左、右焦点,
圆锥曲线方程知识点总结
§8.圆锥曲线方程 知识要点
一、椭圆方程.
PF1?PF?PF?PF222?2a?F1F2方程为椭圆,?2a?F1F2无轨迹,?2a?F1F2以F1,F2为端点的线段221. 椭圆方程的第一定义:PF1PF1
⑴①椭圆的标准方程:i. 中心在原点,焦点在x轴上:xa?22yb?22?1(a?b?0)22.
.
ii. 中心在原点,焦点在y轴上:yaxb?1(a?b?0)②一般方程:Ax2?By2?1(A?0,B?0).
xa22③椭圆的标准方程:
?yb22?1的参数方程为??x?acos??y?bsin?(一象限?应是属于0????2).
⑵①顶点:(?a,0)(0,?b)或(0,?a)(?b,0).
②轴:对称轴:x轴,y轴;长轴长2a,短轴长2b. ③焦点:(?c,0)(c,0)或(0,?c)(0,c). ④焦距:F1F2?2c,c?a2?b2. ⑤准线:x??a2c或y??a2c.
⑥离心率:e?⑦焦点半径:
ca(0?e?1).
i. 设P(x0,y0)为椭圆ii.设P(x0,y0)为椭圆
xaxb2222?yb2222?1(a?b?0)上的一点,F1,F?1(a?b?0)上的一点,F1,Fa22为左、右焦点,
12.5圆锥曲线中的点差法习题【附答案】
圆锥曲线中的点差法习题
若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。
一、 以定点为中点的弦所在直线的方程
x2y2??1内一点M(2,1)引一条弦,例1、 过椭圆使弦被M点平分,求这条弦所在直线164的方程。
y2?1,经过点M(1,1)能否作一条直线l,使l与双曲线交于A、例2、 已知双曲线x?2B,且点M是线段AB的中点。若存在这样的直线l,求出它的方程,若不存在,
2说明理由。
二、
过定点的弦和平行弦的中点坐标和中点轨迹
1y2x2??1的一条弦的斜率为3,它与直线x?的交点恰为这条弦的中例3、 已知椭圆
27525点M,求点M的坐标。
y2x2??1,求它的斜率为3的弦中点的轨迹方程。 例4、 已知椭圆
7525
三、
求与中点弦有关的圆锥曲线的方程
例5、 已知中心在原点,一焦点为F(0,50)的椭圆被直线l:y?3x?2截得的弦的中点
的横坐标为
1,求椭圆的方程。 2
四、圆锥曲线上两点关于某直线对称问题
x2y2??1,试确定的m取值