二元函数的极限与连续的概念
“二元函数的极限与连续的概念”相关的资料有哪些?“二元函数的极限与连续的概念”相关的范文有哪些?怎么写?下面是小编为您精心整理的“二元函数的极限与连续的概念”相关范文大全或资料大全,欢迎大家分享。
求二元函数极限几种方法
1.二元函数极限概念分析
定义1 设函数f在D?R2上有定义,P0是D的聚点,A是一个确定的实数.如果对于任意给定的正数?,总存在某正数?,使得P?U0(PD时,都有 0;?) f(P)?A??,
则称f在D上当P?P0时,以A为极限,记limf(P)?A.
P?P0P?D上述极限又称为二重极限.
2.二元函数极限的求法
2.1 利用二元函数的连续性
命题 若函数f(x,y)在点(x0,y0)处连续,则
limf(x,y)?f(x0,y0).
(x,y)?(x0,y0)2 例1 求f(x,y)?x?2xy 在点(1,2)的极限. 2 解: 因为f(x,y)?x?2xy在点(1,2)处连续,所以
limf(x,y)x?1y?2?lim(x2?2xy)x?1y?2?12?2?1?2?5.
例2 求极限lim1.
?x,y???1,1?2x2?y2 解: 因函数在?1,1?点的邻域内连续,故可直接代入求极限,即
11=.
?x,y???1,1?2x2?y23lim1 / 15
2.2 利用恒等变形法
将二元函数进行恒等变形,例如分母或分子有理化等. 例3
函数、极限、连续重要概念公式定理
一、函数、极限、连续重要概念公式定理
(一)数列极限的定义与收敛数列的性质
数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞=.若{}n x 的极限不存在,则称数列{}n x 发散.
收敛数列的性质:
(1)唯一性:若数列{}n x 收敛,即lim n n x A →∞
=,则极限是唯一的. (2)有界性:若lim n n x A →∞
=,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞
=,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或.
(4)若数列收敛于A ,则它的任何子列也收敛于极限A .
(二)函数极限的定义
(三)函数极限存在判别法 (了解记忆)
1.海涅定理:()0lim x x f x A →=?对任意一串0n x x →()0,1,2,n x x n ≠=L ,都有 ()lim n n f x A →∞
=. 2.充要条件:(1)()()000lim ()lim lim x x x x x x f x A f x f x A +-→→→=?==;
(2)lim ()lim ()lim ()x x x f x A
第一讲:函数的极限与连续
第一章、函数、极限和连续(约20%)
一、函数
(一).理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
1、函数的概念:
设x和y是两个变量,D是一个给定的数集,如果对于给定的每个数x?D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y?f(x),数集D叫做这个函数的定义域,x叫做自变量,y叫做因变量。y的取值范围叫函数的值域。已知函数
f(x)的定义域,求函数f(g(x))的定义域。
2、定义域的求法原则
(1)分母不为零 (2)x,x?0 (3)lnx,x?0 (4)arcsinx,arccosx,?1?x?1
(5)同时含有上述四项时,要求使各部分都成立的交集 例1、 求的定义域:(1)y?4?x2?ln?x2?1?
(2) y?1+x?ln?4?x??(3)y?【提升】
1 x?3x2?4?1 x?1例2、 当0?x?1是函数f(x)的定义域,求f(sin2x)的定义域。 例3、当0?x?4是函数f(x?2x?4)的定义域,求f(x)的定义域。
3、表达式、函数值
例4、下列各对函数中,两个函数相等的是 ———————
高等数学 第二章 极限与连续 2.8 函数的连续性
这是我们学校的课件,拿来与大家分享,欢迎下载。
高等数学—第二章
极限与连续基础课教学部 数学教研室
这是我们学校的课件,拿来与大家分享,欢迎下载。
第八节
函数的连续性
一、函数改变量 二、连续函数的概念 三、函数的间断点 四、连续函数的运算法则 五、在闭区间上连续函数的性质 六、利用函数连续性求函数极限
这是我们学校的课件,拿来与大家分享,欢迎下载。
一、函数改变量 定义2.11 变量t由初值 t1 改变到终值 t 2 , 则称 t t 2 t1 为变量t的改变量。 等价定义:设函数 y= f (x) U ( x , ) 有定义,若自变量x 在 x 0 改变到 x 0 x ( x 0 ), 则函数 y 的改变量为 从 y f ( x 0 x ) f ( x ). 函数的增量0
yy f (x)
y y
y f (x)
y x0
x
x0
x0 x
x
0
x0
x0 x
x
这是我们学校的课件,拿来与大家分享,欢迎下载。
例1 设正方形边长为x,求边长改变量为Δx 时, 面积的增量。 2 y x 解: 设正方形的面积: 当边长变为x+Δx时,面积为: 2 y1 x x . 则面积的改
研究二元函数(多元函数)的思想方法
研究二元函数(多元函数)的思想方法
一、研究二元函数(多元函数)的思想方法,总的说来有两种:一种称为多重法,用这种方法研究二元函数就是使两个自变量同时变化,一般来说,凡涉及多元函数的一些重要概念和理论多采用多重法,例如多元函数的极限、连续、可微、极值等概念就是如此;另一种是暂时令其中某一个自变量变化,其余的自变量都视为常数,即将二元函数(多元函数)化为一元函数来研究,这种方法称为转化法或单一法。一般来说,凡计算二元函数的某些量多采用此法,例如二元函数的累次极限、偏导数等。
二、二元函数是一元函数的推广,所以必然保留一些与一元函数类似的性质,如一元函数的极限、连续的运算性质可以类比的推广到二元函数,在学习中大家要注意这种类比的方法。 我们既要领会二元函数与一元函数的共性,更要注意它们的差别:例如, z
x就是一个
整体记号,而不是 z与 x的商,可导(偏导数存在)不一定连续,可微与可导不等价等等,这些差别需要我们尤其注意。
一元函数与多元函数的不同从方法论上可以这样理解:一元函数中的重要性质或理论,如果在多元函数中涉及到且以多重法给出,那么这种性质或理论就仍可保持;反之,如果在多元函数中涉及的概念既有用多重法又有用单一法给出,则这种性质或理论就不再保持
函数极限与连续习题加答案
第一章 函数、极限与连续
第一讲:函数
一、是非题
1.y? ( ) x2与y?x相同;
2.y?(2x?2?x)ln(x?1?x2)是奇函数; ( 3.凡是分段表示的函数都不是初等函数; ( 4. y?x2(x?0)是偶函数; ( 5.两个单调增函数之和仍为单调增函数; ( 6.实数域上的周期函数的周期有无穷多个; ( 7.复合函数f[g(x)]的定义域即g(x)的定义域; ( 8.y?f(x)在(a,b)内处处有定义,则f(x)在(a,b)内一定有界。 ( 二、填空题
1.函数y?f(x)与其反函数y?
二元函数连续性、偏导数存在性及可微性的讨论
编号:
Xxxxxxxx学校
本科毕业论文
二元函数连续性、偏导数存在性及可微性的讨论
院 系:数学科学系 姓 名:XXXX 学 号:XXX 专 业:XXXX 年 级:2008级 指导教师:XXX 职 称:讲师 完成日期:2012年5月
摘 要
二元函数微分学是高等数学的重点之一,理清其基本概念之间的相互关系对于认识二元函数的性质有重要的意义,只有这样才能弄清楚二元函数连续、偏导数及可微之间的关系,才能更好地加以利用.本论文将重点对它们之间的关系加以总结和探讨,并给以证明和应用举例.
本论文正文主要介绍了二元函数连续性、偏导数存在性及可微性的基本知识.对它们分别进行了总结证明和进一步讨论,还总结二元函数连续性、偏导数存在性及可微性的简单关系,并举出的例子加以论证支撑.
关键词:二元函数;连续;偏导数;可微
I I
Abstract
Binary Function Differential Calculus is one of the priorities of the higher mathematics, to cla
2015函数、极限与连续习题加答案
专插本数学复习题(兰 星)
第一章 函数、极限与连续
第一讲:函数
一、是非题
1.y? ( ) x2与y?x相同;
2.y?(2x?2?x)ln(x?1?x2)是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. y?x2(x?0)是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( )
6.实数域上的周期函数的周期有无穷多个; ( ) 7.复合函数f[g(x)]的定义域即g(x)的定义域; ( ) 8.y?f(x)在(a,b)内处处有定义,则f(x)在(a,b)内一定有界。
2015函数、极限与连续习题加答案
专插本数学复习题(兰 星)
第一章 函数、极限与连续
第一讲:函数
一、是非题
1.y? ( ) x2与y?x相同;
2.y?(2x?2?x)ln(x?1?x2)是奇函数; ( ) 3.凡是分段表示的函数都不是初等函数; ( ) 4. y?x2(x?0)是偶函数; ( ) 5.两个单调增函数之和仍为单调增函数; ( )
6.实数域上的周期函数的周期有无穷多个; ( ) 7.复合函数f[g(x)]的定义域即g(x)的定义域; ( ) 8.y?f(x)在(a,b)内处处有定义,则f(x)在(a,b)内一定有界。
用MATLAB绘制一元函数和二元函数的图象
《MATLAB语言》课程论文
用MATLAB绘制一元函数和二元函数的
图象
姓名: 马军
学号: 12010245245 专业: 通信工程 班级: 2010级通信1班 指导老师:汤全武
学院: 物理电气信息学院
完成日期:2011.12.20
用MATLAB绘制一元函数和二元函数的图像
(马军 12010245245 2010级通信工程1班)
【摘要】大学物理力学中涉及许多复杂的数值计算问题,例如非线性问题,对其手工求解较为复杂,而MATLAB语言正是处理非线性问题的很好工具,既能进行数值求解,又能绘制有关曲线,非常方便实用。另外,利用其可减少工作量,节约时间,加深理解,同样可以培养应用能力。 【关键词】一元函数 二元函数 MATLAB 图像的绘制
一、问题的提出
MATLAB语言是当今国际上科学界(尤其是自