平面向量填空题及答案
“平面向量填空题及答案”相关的资料有哪些?“平面向量填空题及答案”相关的范文有哪些?怎么写?下面是小编为您精心整理的“平面向量填空题及答案”相关范文大全或资料大全,欢迎大家分享。
精选平面向量压轴填空题
1. 在△ABC 中,已知AB =4,AC =3,P 是边BC 的垂直平分线上的一点,则BC AP ?u u u r u u u r =
_____________ 【答案】2
7-
解析: 2
7)(21)()()()(-=+?-=?-=+?-=?
2.
0,31=?==,点C 在AOB ∠内,AOC ∠30o =.
设(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r ,则m n
等于 【答案】3
[解析]:法一:建立坐标系,设),(y x C 则由
(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r 得 ???==?+=n
y m x n m y x 3)3,0()0,1(),(而030=∠AOC 故n m x y 330tan 0== 法二:(,)OC mOA nOB m n R =+∈u u u r u u u r u u u r 两边同乘或得
???????=??=?=?=?n n m m OA OC 333两式相除得3=n m 3. 在△ABC 中,若4=?=?,则边AB 的长等于
平面向量知识点复习填空
必修4第二章平面向量知识点
1、向量:______________________. 数量:_______________________. 有向线段的三要素:__________________. 零向量:__________________. 单位向量:______________________________. 平行向量(______________):_______________________________.零向量与任一向量平行. 相等向量:____________且____________. 2、向量加法运算:
⑴三角形法则的口诀:________________. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:
??????a?b?a?b?a?b.
⑷运算性质:①交换律:______________;_______________________;
②结合律:
????⑸坐标运算:设a??x1,y1?,b??x2,y2?,则a?b?? x 1 ?, y1y 2 ? .2 x ?
3、向量减法运算:
⑴三角形法则的特点:______________________________.
C ?a
平面向量作业
大毛毛虫★倾情搜集★精品资料
向量
1、在△ABC中,AB=AC,D、E分别是AB、AC的中点,则( )
???????1??????????????????????????A、AB与AC共线 B、DE与CB共线C、ADsin?与AE相等 D、AD与BD相等
2、下列命题正确的是( )
????????A、向量AB与BA是两平行向量
????aaB、若、b都是单位向量,则=b
????????C、若AB=DC,则A、B、C、D四点构成平行四边形
D、两向量相等的充要条件是它们的始点、终点相同 3、在下列结论中,正确的结论为( )
????????????(1)a∥b且|a|=|b|是a=b的必要不充分条件;(2)a∥b且|a|=|b|是a=b的既不充分也不必要条件;????????????(3)a与b方向相同且|a|=|b|是a=b的充要条件;(4)a与b方向相反或|a|≠|b|是a≠b的充分不必要条
件A、(1)(3) B、(2)(4) C、(3)(4) D、(1)(3)(4)
4、把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向
选择题--平面向量1
x
测试1 平面向量1
1.若=(2,4),AC=(1,3),则= ( )
A.(1,1) B.(-1,-1)
C.(3,7) D.(-3,-7)
2.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|= ( )
A.1 B.2
C.2 D.4
3.已知平面向量a=(1,2),b=(-2,m),且a∥b,则2a+3b= ( )
A.(-5,-10) B.(-4,-8)
C.(-3,-6) D.(-2,-4)
4.在△ABC中, c, b.若点D满足 2,则 ( )
21b c 33
21C.b c 33A. 52b 3312D.b c 33B.c
5.已知平面向量a=(x,1),b=(-x,x2),则向量a+b ( )
A.平行于x轴 B.平行于第一、三象限的角平分线
C.平行于y轴 D.平行于第二、四象限的角平分线
测试2 平面向量2
1.向量a²c=b²c是a=b的 ( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.已知D、E、F分别是三角形ABC的边长的边BC、CA、AB的中点,且
11111则①
22.7平面向量
第四节
平面向量及其加减法
22.7 平面向量上海市民办文绮中学 杨卓远
试一试:
在上新课之前,
谈谈你对向量的了解! 越多越好哟!
课题引入如图,从点A向东走5米到达点B,与从点A向
北走5米到达点C,两者有什么区别?再看从点A向东走5米到达点B,与从点A向西 走5米到达点D,两者又有什么区别?C
5米 5米D
5米AB
向量的定义由以上的讨论可以看出,世界上确实存在着“既有大小、又有方向的量” . 表明我们有必 要对这种量进行学习和研究.
既有大小、又有方向的量叫做向量(vector) .C
5米 5米D
5米AB
向量的表示方法 图中向量可表示为:有向线段 AB ,其中 A为始点,B为终点.B
AB的大小,称为向量的模,记作 AB ;
始点 A和终点 B间的距离表示向量
A
自始点 A指向终点 B的方向表示向量的方向.
比较:线段 AB与线段 BA一样吗?向量 AB 与向量 BA一样吗?
向量的表示方法向量还可以用小写的粗体英文字母表示,如 a、b、c、…;手写时,在字母上方加箭头,
如 a 、b 、c 、…(见下图),它们的模分别 b c 记作 a 、 、 、… .
a
b
c
练习:如图,
平面向量的练习题及答案
精品文档
平面向量的练习题及答案
典例精析
题型一 向量的有关概念
下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.
其中真命题的序号是.
①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.
正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 下列各式: ①|a|=a?a;
② ?c=a? ; ③OA-OB=BA;
④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;
⑤a=,b=,且a与b不共线,则⊥. 其中正确的个数为
2016全新精品资料-全新公文范文-全程指导写作 –独家原创
1 / 28
精品文档
从平面向量到空间向量
从平面向量到空间向量学案
第一节 :从平面向量到空间向量
设计人:陈维江 审核人:席静
上课时间: 班级: 姓名:
学习目标:1、理解空间向量的概念;
2、掌握空间向量的几何表示法和字母表示法;
3、掌握两个空间向量的夹角、空间向量的方向向量和平面的法向量的概念。
学习重点:理解两个向量的夹角、直线的方向向量、平面的法向量等概念 学习难点:理解共面向量的概念
新课学习:
看课本25-26页回答下列问题:
从平面向量到空间向量学案
做27页练习 总结:本节概念较多,多看课本,理解概念是关键。 课后作业:
平面向量及应用经典例题
专题9 平面向量及应用
★★★自我提升
????1.如图1所示,D是?ABC的边AB上的中点,则向量CD?( )
??2.已知向量a?(3,1),b是不平行于x轴的单位向量,且a?b?3,则b?()
3113133) C.(,) D.(1,0) ,) B.(,222244??3. ?ABC的三内角A,B,C所对边的长分别为a,b,c设向量p?(a?c,b),
????q?(b?a,c?a),若p//q,则角C的大小为( ) ???2?A. B. C. D. 6323???????24.已知|a|?2|b?|0,且关于x的方程x?|a|x?a?b?0有实根,则a与b的夹角的取值范围是
A.(( )
????1????????1????????1????????1????A.?BC?BA B. ?BC?BA C. BC?BA D. BC?BA
222???2???2??] D.[,?] ] B.[,?] C.[,63336115.若三点A(2,2),B(a,0),C(0,b)(ab?0)共线,则?的值等于___
平面向量典型例题
平面向量经典例题:
1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于()
A.-2B.-1
3
C.-1 D.-2
3
[答案] C
[解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1.
2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=()
A.-1 B.- 3
C.-3 D.1
[答案] C
[解析]a+2b=(3,1)+(0,2)=(3,3),
∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3.
(理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为()
A.-6
11B.-
11
6
C.6
11 D.
11
6
[答案] C
[解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,
∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11.
3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为()
A.150°B.120
平面向量数量积
平面向量数量积的 物理背景及其含义
教学目标:掌握平面向量数量积的概念, 掌握平面向量数量积的概念,能用它来 表示向量的模及向量的夹角
教学重点:平面向量数量积的运算律, 平面向量数量积的运算律,用它来表示向量的模及向量的夹角
教学难点:平面向量数量积的定义及运算律的理解, 平面向量数量积的定义及运算律的理解,平面向量数量积的应用
如图所示:物体在力F的作用下由A移动到B 问力F 如图所示:物体在力F的作用下由A移动到B,问力F 所作的功? 所作的功? F θ S A B F
力对物体所做的功,等于力的大小、位移的大小、 力与位移夹角的余弦这三者的乘积。
W= F S cosθ
已知两个非零向量a与b,我们把数量|a||b|cos θ叫做 a b a b a与b的数量积,记作a ·b ,即 b a b a ·b= |a||b|cos θ b a b 其中θ是a与b的夹角, |a|cos θ( |b|cos θ )叫 a b a b 做向量a在b方向上( b 在 a方向上 )的投影。 a b ( A a O A1 b 几何意义:数量积a ·b等于a的长度|a|与b在a的方向上的 a b a a b a 投影|b|cos θ的乘积