常用求导公式和积分公式

“常用求导公式和积分公式”相关的资料有哪些?“常用求导公式和积分公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“常用求导公式和积分公式”相关范文大全或资料大全,欢迎大家分享。

常用的求导积分公式及解法

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

常用的求导积分公式及解法

常用的求导积分公式及解法 1.基本求导公式

⑴ (C) 0(C为常数)⑵ (xn) nxn 1;一般地,(x ) x 1。 特别地:(x) 1,(x2) 2x,()

1x

11

,。 (x) 2

x2x

⑶ (ex) ex;一般地,(ax) axlna (a 0,a 1)。 ⑷ (lnx)

11

(a 0,a 1)。 ;一般地,(logax)

xxlna

2.求导法则 ⑴ 四则运算法则

设f(x),g(x)均在点x可导,则有:(Ⅰ)(f(x) g(x)) f (x) g (x); (Ⅱ)(f(x)g(x)) f (x)g(x) f(x)g (x),特别(Cf(x)) Cf (x)(C为常数); (Ⅲ)(

f(x)f (x)g(x) f(x)g (x)1g (x)

,特别。 ) , (g(x) 0)() 22

g(x)g(x)g(x)g(x)

3.微分 函数y f(x)在点x处的微分:dy y dx f (x)dx 4、 常用的不定积分公式

1 1x2x32

xdx 1x C ( 1), dx x c, xdx 2 c, xdx 3(1) ;

4x3

xdx c 4

1axxxx

C (a 0,

常用积分公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

常 用 积 分 公 式

(一)含有ax?b的积分(a?0) 1.

dx1=?ax?balnax?b?C

2.(ax?b)dx=

??1(ax?b)??1?C(???1)

a(??1)3.

x1dx(ax?b?blnax?b)?C =?ax?ba2x21?1?dx=3?(ax?b)2?2b(ax?b)?b2lnax?b??C 4.?ax?ba?2?5.

dx1ax?b=??x(ax?b)blnx?C

6.

?dx1aax?b=??ln?C 22x(ax?b)bxbx7.

1bx(lnax?b?)?C dx=?(ax?b)2a2ax?b1b2x2)?C 8.?dx=3(ax?b?2blnax?b?aax?b(ax?b)29.

?dx11ax?b=?ln?C

x(ax?b)2b(ax?b)b2x(二)含有ax?b的积分

23(ax?b)?C ?3a2(3ax?2b)(ax?b)3?C 11.?xax?bdx=215a22(15a2x2?12abx?8b2)(ax?b)3?C 12.?xax?bdx=3105a10.

ax?bdx=13.

?2xdx=2(ax?2b)ax?b?C

3aax?b1

14.

?2x2(3a2x2?4abx?8b2)ax?b?C dx=31

Excel常用公式和技巧公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

常用函数公式及技巧搜集

【身份证信息提取】

从身份证号码中提取出生年月日

=IF(LEN(A2)=15,\\

从身份证号码中提取出性别

=IF(MOD(MID(A1,15,3),2),\男\女\

从身份证号码中进行年龄判断

以2006年10月31日为基准日,按按身份证计算年龄(周岁)的公式

=DATEDIF(TEXT(MID(A1,7,6+(LEN(A1)=18)*2),\

按身份证号分男女年龄段

按身份证号分男女年龄段,身份证号在K列,年龄段在J列(身份证号为18位) 男性16周岁以下为 1 男性16周岁(含16周岁)以上至50周岁为 2 男性50周岁(含50周岁)以上至60周岁为 3 男性60周岁(含60周岁)以上为 4 女性16周岁以下为 1 女性16周岁(含16周岁)以上至45周岁为 2 女性45周岁(含45周岁)以上至55周岁为 3 女性55周岁(含55周岁)以上为 4

=MATCH(DATEDIF(DATE(MID(K1,7,4),MID(K1,11,2),MID(K1,13,2)),TODAY(),\,50,60}-{0,0,5,5}*ISEVEN

高等数学求导公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

I.基本函数的导数 01.?C???0;

02.?x?????x??1;

03.?sinx???cosx; 04.?cosx????sinx;

05.

?tanx???sec2x; 06.?cotx????csc2x;

07.?secx???secxtanx; 08.?cscx????cscxcotx;09.?ax???axlna; 10.?ex???ex;

11.?log1ax???xlna; 12.?lnx???1x;

13.

?arcsinx???11?x2;

14.?arccosx????11?x2;15.?arctanx???11?x2; 16.

?arccotx????11?x2。

II.和、差、积、商的导数 01.?u?v???u??v?; 02.?Cu???Cu?; 03.?uv???u?v?uv?; 04.??u??u?v?uv??v???v2(v?0)。

III复合函数的导数 若y?f?u?,u???x?,则

dydx?dydududx 或 y??x??f??u????x?。

? 计算极限时常用的等价无穷小

12limsinx?x limtanx?x lim?1?cosx??x

x?0x?0x

积分公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

2.基本积分公式表

(1)∫0dx=C (2)(3)(4)(5)

=ln|x|+C

(m≠-1,x>0) (a>0,a≠1)

(6)∫cosxdx=sinx+C (7)∫sinxdx=-cosx+C (8)∫sec2xdx=tanx+C (9)∫csc2xdx=-cotx+C (10)∫secxtanxdx=secx+C (11)∫cscxcotxdx=-cscx+C (12)(13)注.(1)(2)

=arcsinx+C =arctanx+C 不是

在m=-1的特例.

=ln|x|+C ,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x.

事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =(3)要特别注意积分.

下面我们要学习不定积分的计算方法,首先是四则运算.

3.不定积分的四则运算

根据微分运算公式 d(f(x)?g(x))=df(x)?dg(x)

.

的区别:前者是幂函数的积分,后者是指数函数的

d(kf(x))=kdf(x)

我们得不定积分的线性运算公式

(1)∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx (2)∫kf(x)dx=k∫f(x)dx,k是非零常数.

现在可利用这两个公式与基本积分公式来计算简单不定积分.

高等数学求导公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

I.基本函数的导数 01.?C???0;

02.?x?????x??1;

03.?sinx???cosx; 04.?cosx????sinx;

05.

?tanx???sec2x; 06.?cotx????csc2x;

07.?secx???secxtanx; 08.?cscx????cscxcotx;09.?ax???axlna; 10.?ex???ex;

11.?log1ax???xlna; 12.?lnx???1x;

13.

?arcsinx???11?x2;

14.?arccosx????11?x2;15.?arctanx???11?x2; 16.

?arccotx????11?x2。

II.和、差、积、商的导数 01.?u?v???u??v?; 02.?Cu???Cu?; 03.?uv???u?v?uv?; 04.??u??u?v?uv??v???v2(v?0)。

III复合函数的导数 若y?f?u?,u???x?,则

dydx?dydududx 或 y??x??f??u????x?。

? 计算极限时常用的等价无穷小

12limsinx?x limtanx?x lim?1?cosx??x

x?0x?0x

单位换算和常用公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

单位换算和常用公式

长度

1千米(km)=0.621英里(mile) 1米(m)=3.281英尺(ft)=1.094码(yd) 1厘米(cm)=0.394英寸(in)

1英里(mile)=1.609千米(km) 1英尺(ft)=0.3048米(m) 1英寸(in)=2.54厘米(cm)

1海里(n mile)=1.852千米(km) 1码(yd)=0.9144米(m) 1英尺(ft)=12英寸(in)

1码(yd)=3英尺(ft) 1英里(mile)=5280英尺(ft) 1海里(n mile)=1.1516英里(mile)

质量

1吨(t)=1000千克(kg)=2205磅(lb)=

1.102短吨(sh.ton)=0.934长吨(long.ton) 1千克(kg)=

2.205磅(lb) 1短吨(sh.ton)=0.907吨(t)=2000磅(1b)

1长吨(long.ton)=1.016吨(t) 1磅(lb)=0.454千克(kg) 1盎司(oz)=28.350克(g)

密度

1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3) 1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3) 1磅/英寸3(l

微积分-积分公式定理集锦

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

各种积分公式,公式大概分为四类,

北京理工大学

微积分-积分定理集锦

常用积分公式 定理

程功 2010/12/22

各种积分公式,公式大概分为四类,

定理

1.积分存在定理

1)当函数f(x)在区间 a,b 上连续时,称f(x)在区间 a,b 上可积.

2)设函数f(x)在区间 a,b 上有界,且只有有限个间断点,则f x 在区间 a,b 上可积。

2.性质:1 [f(x) g(x)]dx f(x)dx g(x)dx(此性质可以推广到有限多个函数求和的

a

a

a

bbb

情况)。

性质2. kf(x)dx k f(x)dx k为常数

a

a

bb

假设a c b,性质3: f(x)dx f(x)dx f(x)dx(定积分对于积分区间具有可加性)

a

a

c

bcb

性质4: 1 dx badx b a

a

b

性质5:如果在区间 a,b 上f(x) 0,则 f(x)dx 0 (a b)

a

b

推论(1):如果在区间[a,b]上,f(x) g x 则 f(x)dx g(x)dx(a b)

a

a

bb

推论(2):

b

a

f()xdx fx a b

a

b

性质6:设M及m分别是函数f x 上的最大值与最小值,则

m(b a) f(x)dx M(b a)

a

b

3.定积分中值定理

如果函数f x

高等数学常用导数积分公式查询表好

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

08070141常用导数和积分公式

导数公式:

? (1) (C)?0 ? (3) (sinx)?cosx

???1?(x)??x (2)

? (4) (cosx)??sinx

(5)

(tanx)??sec2x (7) (secx)??secxtanx

(9)

(ax)??axlna (log1 (11)

ax)??xlna

(arcsinx)??1 (13)

1?x2

(arctanx)??1 (15)

1?x2

(cotx)???csc2x (cscx)???cscxcotx

(ex)??ex

(lnx)??1x,

(arccosx)???11?x2(arccotx)???11?x2

(6)

(8) (10) (12)

(14)

(16)

08070141常用导数和积分公式

基本积分表

?tgxdx??lncosx?C?ctgxdx?lnsinx?C?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?Cdx1x?arctg?C?a2?x2aadx1x?a?ln?x2?a22ax?a?Cdx1a?x??a2?x22alna?x?Cdxx?arcsin?C?a2?x2a?2ndx

8-5隐函数的求导公式

标签:文库时间:2025-01-18
【bwwdw.com - 博文网】

一、一个方程的情形对方程

F ( x, y ) 0

(1)

如能确定一个一元隐函数 y 隐函数的导数. 2 2 如 x y

f ( x) 且隐函数可导,

则可将y看成x的函数,对上式直接求导,可求出

1 0

直接对x求导,利用y为x的函数,可得

x 2 x 2 yy 0 y y' '

但必须先明确两个问题: 1) 在什么条件下,方程(1)可以确定隐函数? 2) 如能确定隐函数,其是否可导?

1. F ( x , y ) 0定理1 设函数F(x,y)在点 P( x0 , y0 )的某邻域内具连续 偏导数,且

F ( x0 , y0 ) 0, Fy ( x0 , y0 ) 0,

则方程F(x,y)=0在( x0 , y0 ) 的某邻域内能唯一确定一个 可导且具连续导数的函数y=f(x),满足 y0 f ( x0 )

Fx dy dx Fy

隐函数的求导公式

隐函数求导公式的推导 求复合函数

F ( x, y) F ( x, f ( x)) 0的全导数,即得

由Fy 连续,且 Fy ( x0 , y0 ) 0 故存在点 ( x0 , y0 ) 的一邻域,使得在其上Fy 0 从而

dy Fx Fy 0 dx