线性齐次常微分方程组

“线性齐次常微分方程组”相关的资料有哪些?“线性齐次常微分方程组”相关的范文有哪些?怎么写?下面是小编为您精心整理的“线性齐次常微分方程组”相关范文大全或资料大全,欢迎大家分享。

线性常微分方程组

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

Review 常系数齐次线性ODE的特征解法x(n)n

+ a1 x

( n 1)

λ + a1λ特征根 重数

n 1

+ L + an 1 x′ + an x = 0

+ L + an 1λ + an = 0.线性无关解 λt

λ (实) λ (实)

1kλt αt

e

e ,te , , t Lαt αt αt

λt

k 1 λt

e

α ± iβ

1k

e cos β t , e sin β t e cos β t , te cos β t ,L , t e cos β t , eα t sin β t , teα t sin β t ,L , t k 1eα t sin β tk 1 α t

α ± iβ

常系数非齐次线性ODE的待定系数法

x ( n ) + a1 x ( n 1) + L + an 1 x′ + an x = f (t ) f (t ) special solution x(t )

q (t )t k eλt , q real polynomial, p (t )e , λ ∈ deg(q ) ≤ deg( p ), p real polynomial, k = multiplicity of λ as an

常微分方程考研讲义第五章 线性微分方程组

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

第五章 线性微分方程组

[教学目标]

1. 理解线性微分方程组解的存在唯一性定理,掌握一阶齐(非齐)线性微分方程组解

的性质与结构,

2. 理解n 阶线性微分方程与一阶线性微分方程组的关系。 3. 掌握非齐次线性微分方程组的常数变易法,

4. 理解常系数齐线性微分方程组基解矩阵的概念,掌握求基解矩阵的方法。 5. 掌握常系数线性微分方程组的Laplce变换法。 [教学中难点]求解常系数非齐次线性微分方程组 [教学方法] 讲授,实践。 [教学时间] 16学时

[教学内容] n 阶线性微分方程与一阶线性微分方程组的关系,一阶线性微分方程组解的存在唯一性定理;齐(非齐)线性微分方程组解的性质与结构,求解非齐次线性微分方程组的常数变易法;常系数齐线性微分方程组的基解矩阵及求基解矩阵的方法;求常系数线性微分方程组的Laplce变换法。 [考核目标]

1.线性微分方程组解的性质与结构。 2.能够求解常系数线性微分方程组。

§5.1 存在唯一性定理

5.1.1记号和定义 考察形如

??a11(t)x1?a12(t)x2???a1n(t)xn?f1(t)?x1?x??a(t)x?a(t)x???a(t)x?f(t)?22112222nn2

06 常微分方程

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

同济大学五版高等数学学习资料

第六章 常微分方程

一. 求解下列微分方程: 1. y' ex y

+ex=0.

解.

dydx=ex(e y 1), dye y 1

=exdx ln1 ey

=ex, 1 ey=cee xc

y=ln(1 ce

e x

).

2. dy dx

=(1 y2

)tanx

y(0)=2

解.

dy

1 y

2

=tanxdx

11+12lncy1 y= lncosx, y(0) = 2, 2lnc1+21 2=0, ln

1+y13+cos2x

3(1 y)=lncos2x, y=3 cos2x

二. 求解下列微分方程:

1. x x

1+ey 1 x

dx+ey

y dy=0 xey

x

1 解. dx y dy

=x

. 1+ey

x

y

=u,x=yu.(将y看成自变量) dxdy=u+ydudy

, 所以 u+ydudy=eu(u 1)

1+eu duueu euudy1+eu u= +eu

y=1+eu

c= 1

3

同济大学五版高等数学学习资料

u+eu 1dyd(u+eu)dy1+eu

ln= ln=ln= , = , ydu c yu+euyyu+eu

x

cc1u+euy

非线性方程和常微分方程的解法

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

非线性方程和常微分方程的解法

实验8 非线性方程和常微分方程的解法

一、实验目的

学会用MATLAB软件求解非线性方程和常微分方程。

二、实验内容与要求

1. 非线性方程的整值解

(1)最小二乘法

格式:fsolve(’fun’,x0)%求方程fun=0在估计值x附近的近似解。

[例1.72] 求方程x e 0的解。

>>fc=inline(‘x-exp(-x)’);

>>xl=fsolve(fc,0)

xl=

0.5671

问题1.28:求解方程5xsinx-e 0,观察知有多解,如何求之?

先用命令fplot(’5*x^2*sin(x)-exp(-x),0]’,[0,10])作图1.13,注意5*x^2*sin(x)-exp(-x),0]中的“[ ,0]”是作y=0直线,即x轴。方程在[0,10]区间从图中可看出有4个解,分别在0,3,6,9附近,所以用命令:

>>fun=inline(’5*x^2*sin(x)-exp(-x)’);

>>fsolve(fun,[0,3,6,9],le-6)

得出结果:

ans=

0.5918 3.1407 6.2832 9.4248

【例 1.73】求解方程组x-0.7sinx-0.2co

非线性方程和常微分方程的解法

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

非线性方程和常微分方程的解法

实验8 非线性方程和常微分方程的解法

一、实验目的

学会用MATLAB软件求解非线性方程和常微分方程。

二、实验内容与要求

1. 非线性方程的整值解

(1)最小二乘法

格式:fsolve(’fun’,x0)%求方程fun=0在估计值x附近的近似解。

[例1.72] 求方程x e 0的解。

>>fc=inline(‘x-exp(-x)’);

>>xl=fsolve(fc,0)

xl=

0.5671

问题1.28:求解方程5xsinx-e 0,观察知有多解,如何求之?

先用命令fplot(’5*x^2*sin(x)-exp(-x),0]’,[0,10])作图1.13,注意5*x^2*sin(x)-exp(-x),0]中的“[ ,0]”是作y=0直线,即x轴。方程在[0,10]区间从图中可看出有4个解,分别在0,3,6,9附近,所以用命令:

>>fun=inline(’5*x^2*sin(x)-exp(-x)’);

>>fsolve(fun,[0,3,6,9],le-6)

得出结果:

ans=

0.5918 3.1407 6.2832 9.4248

【例 1.73】求解方程组x-0.7sinx-0.2co

常系数线性微分方程组的一种解法

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

第!"卷第"期宝鸡文理学院学报#自然科学版$

#$,&-./0’&120&345&’’676&18.9:0/;<=46/=6)09-.0’<=46/=6

(!")&("%&’

(!**">0.

!**"年+月

????????????????????????????????????????????????????????????????

常系数线性微分方程组的一种解法

杨继明

玉溪师范学院数学系A云南玉溪B#C+"**$

@

要D给出了常系数齐次线性微分方程组初值问题的一个求解公式A并由此推出常系数齐次线性

差分方程组在给定的初始条件下的一个求解公式E

关键词D常系数F线性微分方程F线性差分方程F标准基解矩阵F矩阵的方幂中图分类号D"HC("G

文献标识码D8

文章编号D"**HI"!B"#!**"$*"I**"+I*+

JKLMNOPQRLSLPTUVWVRVQPTQPOUXMLYPUNLK

ZLNL[UWULOSPVWUQM\VKKUMUWRVQP

常微分方程1

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

常 微 分 方 程

试卷(一至十) 试 卷(一)

一、填空题(3′×10=30′)

1、以y1=e2x,y2=exsinx,y3=excosx为特解的最低阶常系数齐次线性微分方程是 。

2、微分方程4x3y3dx+3x4y2dy=0的通积分是 。 3、柯西问题

dy?x,y(0)=1的解是 。 dx4、方程ydx-xdy=0的积分因子可取 。

5、证明初值问题的毕卡定理所构造的毕卡序列是 。 6、微分方程F(x,y,p)=0若有奇解y=? (x),则y=? (x) 满足的P-判别式是 。 7、线性微分方程组

dY,Y2(x)…,Yn(x)?A(x)Y的解组Y1(x)

dx在某区间上线性无头的充分必要条件是 。 8、设A=

1 0 1 0 0 -1 0 0 2 ,则矩阵指数函数exA= 。

9、方程y???y??y?0的通解是 。

10、由方程y????3ay???3ay??y?0的通解是 。 二、解下列各方程(7′×4=28) 1、求方程

dyx?y?1?的通解: dxx?y?32、 (1+x2)y

常微分方程建模方法

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

第二章 微分方程方法

在应用数学方法解决实际问题的过程中,很多时候,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,在这种情况下,就需要我们建立微分方程模型来研究。事实上,微分方程是研究函数变化规律的有力工具,在物理、工程技术、经济管理、军事、社会、生态、环境、人口、交通等各个领域中有着广泛的应用.下面我们就介绍如何应用微分方程模型来解决实际问题.

利用微分方程解决的问题通常可以分为两类:一类问题要求把未知变量直接表示为已知量的函数,这时,有些问题可以求出未知函数的解析表达式,在很多情况下只能利用数值解法;另一类问题只要求知道未知函数的某些性质,或它的变化趋势,这时可以直接根据微分方程定性理论来研究.

2.1 微分方程的一般理论

2.1.1微分方程简介

所谓微分方程就是表示未知函数、未知函数的导数与自变量之间的关系的方程?若未知函数是一元函数的微分方程? 叫常微分方程?而未知函数是多元函数的微分方程? 叫偏微分方程? 例如

y?4??4y'''?10y''?12y'?5y?sin2x (2.1.1) x2y''?12xy'?5y?0 (y')2?xy?0

56常微分方程试卷

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

南京理工大学《常微分方程》期末试卷

姓名 共 ----- 页

学号 南京理工大学 专业应用数学、统计 使用教材 (通编、讲义、自编) 修读性质 初修 、 重期末考试分数占总分数的百分比 % 考试方法 (闭、开)卷 考试时间 判卷人 讲授总学时 学分 教研室主任 密封线题人 题号 得分 一 二 三 四 五 六 七 八 九 十 总分 核分人 一. 求下列一阶微分方程的通解:(28分)

1.

dy?1?x?y2?xy2 dx

2. (x3?xy2)dx?(x2y?y3)dy?0dy?dy?3. ???x?y?0

dx?dx?dyyy2??2 4.

dxxx二. 设连续函数f(x)满足:三. 利用逐次逼近法求方程

2?x0(10分) f(t)dt?x??tf(x?t)dt,求函数f(x)。

0xdy?y2?x2满足初值条件y(0)?1的近似解: dx(8分) ?0(x),?1(x

常微分方程数值解法

标签:文库时间:2025-01-27
【bwwdw.com - 博文网】

第八章

常微分方程数值解法

摘要:对显式Euler方法来说,当解二阶连续可导时,其局部...(3.10)有解但解不唯一.不论如何选择这八个参数,不可能...算法8.1 经典Runge-Kutta方法本算法用经典Runge-... 关键词:导,论,算法 类别:专题技术

来源:牛档搜索(Niudown.COM)

本文系牛档搜索(Niudown.COM)根据用户的指令自动搜索的结果,文中内涉及到的资料均来自互联网,用于学习交流经验,作品其著作权归原作者所有。不代表牛档搜索(Niudown.COM)赞成本文的内容或立场,牛档搜索(Niudown.COM)不对其付相应的法律责任!

常微分方程数值解法

教学目的 1. 掌握解常微分方程的单步法:Euler方法、Taylor方法和Runge-Kutta方法;2. 掌握解常微分方程的多步法:Adams步法、Simpson方法和Milne方法等;3. 了解单步法的收敛性、相容性与稳定性;多步法的稳定性。

教学重点及难点 重点是解常微分方程的单步法:Euler方法、Taylor方法和Runge-Kutta方法和解常微分方程的多步法:Adams步法、Simpson方法和Milne方法等;难点是理