怎样判定三角形全等教案新青岛版
“怎样判定三角形全等教案新青岛版”相关的资料有哪些?“怎样判定三角形全等教案新青岛版”相关的范文有哪些?怎么写?下面是小编为您精心整理的“怎样判定三角形全等教案新青岛版”相关范文大全或资料大全,欢迎大家分享。
怎样判定三角形全等教案
本教案实用性很强,是一个不错的教案。
青岛版八年级数学(下)教案
怎 样 判 定 三 角 形 全 等
(角边角公理)
山东临朐辛寨初级中学 刘爱玲
教材分析:在探索三角形全等的判定方法时,教科书利用问题串的形式设计
了一系列操作活动。教科书安排的发现过程是由特殊到一般,由问题(1)、(2)
的个别情形转向问题(3)一般情形进行探究,然后由问题(4)提出猜想、归纳
结论,导出判定方法。
学情分析:通过前面几何图形的学习,学生已经具备了观察图形的能力,初
步学会图形语言与符号语言之间的相互转化,在观察、实验、探究、猜测和相互
交流的基础上运用归纳推理和类比推理探索结论,发展合情推理能力。
一、学习目标
1、通过画图、操作、实验、观察等数学活动,探索三角形全等的判定方法。
2、了解判定方法”ASA、AAS”,能初步运用它们判定两个三角形全等。
3、在动手操作的过程中,培养主动探索精神与合作交流意识。
二、学习重、难点
重点:运用判定方法”ASA、AAS”判定两个三角形全等。
难点:全等三角形判定方法的探究。
三、知识准备:
1、只知道一条边相等的两个三角形一定全等吗?只知道一个角相等的两个
三角形一定全等吗?
2、知道一条边及一个角分别相等的两个三角形全等吗?知道两个角分别相
等的两个三角
怎样判定三角形全等教案
本教案实用性很强,是一个不错的教案。
青岛版八年级数学(下)教案
怎 样 判 定 三 角 形 全 等
(角边角公理)
山东临朐辛寨初级中学 刘爱玲
教材分析:在探索三角形全等的判定方法时,教科书利用问题串的形式设计
了一系列操作活动。教科书安排的发现过程是由特殊到一般,由问题(1)、(2)
的个别情形转向问题(3)一般情形进行探究,然后由问题(4)提出猜想、归纳
结论,导出判定方法。
学情分析:通过前面几何图形的学习,学生已经具备了观察图形的能力,初
步学会图形语言与符号语言之间的相互转化,在观察、实验、探究、猜测和相互
交流的基础上运用归纳推理和类比推理探索结论,发展合情推理能力。
一、学习目标
1、通过画图、操作、实验、观察等数学活动,探索三角形全等的判定方法。
2、了解判定方法”ASA、AAS”,能初步运用它们判定两个三角形全等。
3、在动手操作的过程中,培养主动探索精神与合作交流意识。
二、学习重、难点
重点:运用判定方法”ASA、AAS”判定两个三角形全等。
难点:全等三角形判定方法的探究。
三、知识准备:
1、只知道一条边相等的两个三角形一定全等吗?只知道一个角相等的两个
三角形一定全等吗?
2、知道一条边及一个角分别相等的两个三角形全等吗?知道两个角分别相
等的两个三角
三角形全等的判定
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
1、掌握边角边公理的内容。 2、会用边角边公理证明两个三角形全等。
3、培养学生观察、识图的能力。
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
三角形全等的判定一
在下列图中找出全等的三角形,并把它们读出来。
三角形全等的判定一
例: 已知如图,AC=AD,∠CAB=∠DAB 求证△ACB≌△ADB
三角形全等的判定一
变化一已知:AC=BD,∠CAB=∠DBA 求证:△ABC≌△BAD
三角形全等的判定一
变化二已知:(如图)BD、CE相交于A,AB=AC AD=AE 求证:△ABE≌△ACD
三角形全等的判定一
练习已知:(如图)AB=AC、AE=AD 求证:△ABE≌△ACD
三角形全等的判定一
一、判断: 1、△ABC和△EFG中,AB=EF、AC=EG,∠A=∠E, 则△ABC≌△EFG ( ) 2、 △ABC和△EFG中,AB=EF、AC=EG,∠B=∠E, 则△ABC≌△EFG ( )
三角形全等的判定一
二、如图:已知AB∥CD,且AB=CD 求证:△ABC≌△CDA
A
D
B
C
三角形全等的判定一
有两边和一角相等的两个三角 形,是否全等?
全等三角形教案
目录
第一篇:全等三角形教案第二篇:全等三角形的教案第三篇:八年级数学上册 11.1全等三角形的教案设计 人教新课标版第四篇:三角形全等的判定1教案第五篇:浙江省瞿溪华侨2014年中学八年级数学上册 2.8 直角三角形全等的判定教案 浙教版更多相关范文正文
第一篇:全等三角形教案
教学目标 :
1、知识目标:
(1)熟记边角边公理的内容;
(2)能应用边角边公理证明两个三角形全等.
2、能力目标:
(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;
(2) 通过观察几何图形,培养学生的识图能力.
3、情感目标:
(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;
(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全(更多请搜索wWw.haOWORd.COM)等.
教学难点 :在较复杂的图形中,找出证明两个三角形全等的条件.
教学用具:直尺、微机
教学方法:自学辅导式
教学过程 :
1、公理的发现
(1)画图:(投影显示)
教师点拨,学生边学边画图.
(2)实验
让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)
这里
1.5全等三角形判定4
锦城三中____二 年级_ 数学__学科导学案(学生版)
主编:__ __ 审核:____使用时间:__第三周_ 第__3_课时
课题 1.5三角形全等的判定4 学习目标:1、掌握并运用三角形全等的判定定理:两角及其中的一个角的对边对应相等的两个三角形全等(AAS). 2、掌握角平分线的性质定理:角平分线上的点到角两边的距离相等. 教学过程:阅读课本P34-P35 1、思考:在一个三角形中两角确定,第三个角一定确定.我们可不可以,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 2、探究问题:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? 结论:两个 和其中 对应相等的 全等(可以简写成“角角边”或“ ”). 3.右图中,AD=BC,DE∥BC,于是∠1=∠B。 在△ABC和△ADE中,虽有∠A=∠A,AD=BC, ∠1=∠B,△ABC与△ADE全等吗?。你有什么结论? 例6.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD. 求证:A
经典全等三角形各种判定(提高版)
1.三角形全等的判定一(SSS)
1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?
2.如图,C是AB的中点,AD=CE,CD=BE.
求证△ACD≌△CBE.
3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.
4.已知,如图,AB=AD,DC=CB.求证:∠B=∠D。
5.如图, AD=BC, AB=DC, DE=BF. 求证:BE=DF.
1
ACBDACDBE
C D B
A EDCABF
2.三角形全等的判定二(SAS)
1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.
2.如图,△ABC≌△A?B?C?,AD,A?D?分别是△ABC,△A?B?C?的对应边上的中线,AD与A?D?有什么关系?证明你的结论.
3.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与
C 位置关系,并证明你的结论.
D A E
B
4.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.
A B
5.已知:如图AD∥BC,AD=CB
专题二 全等三角形的判定
专题一 全等三角形的判定 1. 全等三角形的判定方法:
2. 如何在复杂图形中找出全等三角形?
(1) 翻折模型:两个三角形经某一条线对折后重合,易找到对应元素 (2) 旋转模型:两个三角形经某一点旋转后能够重合,易找到对应元素 (3) 平移模型:两个三角形经某一条线平移后能够重合,易找到对应元素
ADCIN
CDJAMOBR
B
AKALPQ
DBDCECBE
F例1:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;
变式1-1在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,AE=(1/2)(AD+AB),求∠ADC+∠ABC的度数.
专题二证明两个三角形全等的基本思路
1. 已知两边:找第三边,利用SSS证明;找两边的夹角,利用SAS证明.
2. 已知一边一角:(1)已知一边和它的邻角:找这边的另一个邻角,利用ASA证明;找这个角的另一条边,利用SAS证明;
找这边的对角,利用AAS证明.
(2)已知一边和它的对角:找另外任何一角;找夹边外的任意边,利用AAS证明.
例2:如图,在△AB
三角形全等的判定教学反思
篇一:《全等三角形的判定1》教案及教学反思
《全等三角形的判定1》教案及教学反思
教学目标 1知识目标:
掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等 . 2能力目标:
使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力. 3思想目标:
通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
教学重点、难点:
重点:利用边边边证明两个三角形全等 难点:探究三角形全等的条件 教学过程 (一)复习提问
1、 什么叫全等三角形? 2、 全等三角形有什么性质? 3 、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.
(二)新课讲解: 问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F,则△ABC和△DEF全等吗?
问题2: △ABC和△DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?
一个条件可分为:一组边相等和一组角相等
两个条件可分为:两个边
全等三角形判定复习教学设计
.
. 《三角形全等的判定习题课》教学设计
市科左后旗甘旗卡第三初级中学林丽哲
一、关于教学容和要求的思考
本节的主要容是:通过判定三角形全等的三种题型复习全等三角形的判定方法,利用题中的已知条件、挖掘“隐含条件”、转化“间接条件”、合理添加“辅助线”来判定三角形全等,充分掌握分析问题的方法,使所学的知识能灵活应用到解题当中。要求逐步培养学生观察、比较、分析、综合、抽象和概括的能力,提高学生的空间想象能力和思维能力,这是《数学课程标准》中对中学数学的要求。本节的课题是《三角形全等的判定习题课》是八年级数学的重点容之一,在生活中有广泛的应用,同时三种题型中的条件的挖掘、转化与利用也是九年级的重点容,在八年级学习中适当的安排相应的容,对于九年级的学习起着渗透的积极作用,学会运用条件的直接与间接的使用、转化解决问题策略的思想方法,发展学生的创新意识,增强图形变换的兴趣,也巩固了全等的知识。
二、学生情况的分析
1、学生已有的知识基础:本节课是在学生已经学习完了全等三角形的判定方法,的基础上进一步来研究的。
2、八年级学生心理生理特点:中学生心理学研究指出:初中阶段是智力发展的关键时期,学生逻辑思维从经验型逐步向理论型发展,观察能力记忆力和想象能力也随着迅速发展。
直角三角形全等的判定教案
直角三角形全等的判定
刘晓华
教学目的:
1、通过本节课的学习,进一步弄清全等三角形的判定定理:SAS、ASA、AAS、SSS。
2、通过探究,弄清直角三角形全等的判定定理:HL。
3、培养学生探究解决问题的能力和合作的品质。
教学要求:
1、熟练运用SAS、ASA、AAS、SSS。
2、理解并运用HL。
教学重点:引导学生分析、理解HL定理。
教学难点:熟练运用HL定理解决问题。
教学方法:探究、合作学习。
教学过程:
一、复习引入:
1、学生先说说三角形全等的判定定理有哪些?
2、做一做:
具有下列条件的Rt△ABC和Rt△A′B′C′是否全等。 ①AC=A′C′ ∠A=∠A′
②AC=A′C′ BC=B′C′
③AB=A′B′ ∠B=∠B′
④AC=A′C′ AB=A′B′
二、探究:已知Rt△ABC和Rt△A′B′C′,AC=A′C′,
AB=A′B′,它们全等吗?
推理过程:P.91
结论:斜边、直角边定理:HL
斜边和一条直角边对应相等的两个直角三角形全等。
三、例题讲解:P.91、例1
结论:角平分线的性质;三角形的内心。
四、练习:
1、判断下列说法是否正确,说明理由。
①②③④
2、如图:AC=AD,∠C=∠D=90°,你
能说明∠ABC与∠ABD为什么相等吗?
3、如