apriori算法java实现优化

“apriori算法java实现优化”相关的资料有哪些?“apriori算法java实现优化”相关的范文有哪些?怎么写?下面是小编为您精心整理的“apriori算法java实现优化”相关范文大全或资料大全,欢迎大家分享。

Apriori算法及java实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

Apriori算法详解及java代码实现

1 Apriori介绍

Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。

其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。

2 连接步和剪枝步

在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。 1) 连接步

为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1

Apriori算法及java实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

Apriori算法详解及java代码实现

1 Apriori介绍

Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。

其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。

2 连接步和剪枝步

在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。 1) 连接步

为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1

Apriori算法及java实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

Apriori算法详解及java代码实现

1 Apriori介绍

Apriori算法使用频繁项集的先验知识,使用一种称作逐层搜索的迭代方法,k项集用于探索(k+1)项集。首先,通过扫描事务(交易)记录,找出所有的频繁1项集,该集合记做L1,然后利用L1找频繁2项集的集合L2,L2找L3,如此下去,直到不能再找到任何频繁k项集。最后再在所有的频繁集中找出强规则,即产生用户感兴趣的关联规则。

其中,Apriori算法具有这样一条性质:任一频繁项集的所有非空子集也必须是频繁的。因为假如P(I)< 最小支持度阈值,当有元素A添加到I中时,结果项集(A∩I)不可能比I出现次数更多。因此A∩I也不是频繁的。

2 连接步和剪枝步

在上述的关联规则挖掘过程的两个步骤中,第一步往往是总体性能的瓶颈。Apriori算法采用连接步和剪枝步两种方式来找出所有的频繁项集。 1) 连接步

为找出Lk(所有的频繁k项集的集合),通过将Lk-1(所有的频繁k-1项集的集合)与自身连接产生候选k项集的集合。候选集合记作Ck。设l1和l2是Lk-1中的成员。记li[j]表示li中的第j项。假设Apriori算法对事务或项集中的项按字典次序排序,即对于(k-1)项集li,li[1

数据挖掘Apriori算法C++实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

- --

一、原Apriori算法

1、算法原理:

该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法

(1)L1 = find_frequent_1-itemsets(D); // 挖掘频繁1-项集,比较容易

(2)for (k=2;Lk-1 ≠Φ;k++) {

(3)Ck = apriori_gen(Lk-1 ,min_sup); // 调用apriori_gen方法生成候选频繁k-项集

(4)for each transaction t ∈D { // 扫描事务数据库D

(5)Ct = subset(Ck,t);

(6)for each candidate c ∈Ct

(7)c.count++; // 统计候选频繁k-项集的计数

(8)}

(9)Lk ={c ∈Ck|c.count≥min_sup} // 满足最小支持度的k-

Apriori算法报告

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

一、 实验背景

Apriori算法广泛应用于商业中,应用于消费市场价格分析中,它能够很快的求出各种产品之间的价格关系和它们之间的影响。通过数据挖掘,市场商人可以瞄准目标客户,采用个人股票行市、最新信息、特殊的市场推广活动或其他一些特殊的信息手段,从而极大地减少广告预算和增加收入。百货商场、超市和一些老字型大小的零售店也在进行数据挖掘,以便猜测这些年来顾客的消费习惯。

二、实验目的

1.加强对Apriori算法的理解

2.提高分析解决问题 3.实践编程的能力

三、实验环境及工具

1.硬件环境:网络环境中的微型计算机 2.软件环境:Windows操作系统 3.编程语言:Java

4.数据库引擎:SQL Server 2014

四、Apriori算法思想

Apriori算法是一个挖掘关联规则的算法,是Agrawal等设计的一个基本算法,这是一个采用两阶段挖掘的思想,并且是基于多次扫描事务数据库来执行的。

Apriori算法的设计可以分解为两步骤来执行挖掘: a)从事务数据库(D)中挖掘出所有频繁项集。

支持度大于给定最小支持度minSup的项目集称为频繁项目集(Frequent ItemCollection)。首先需要挖掘出频繁1-项集;然后,继

现代优化算法matlab实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

将以下数据保存为sj.txt

53.7121 15.3046 51.1758 0.0322 46.3253 28.2753 30.3313 6.9348 56.5432 21.4188 10.8198 16.2529 22.7891 23.1045 10.1584 12.4819 20.1050 15.4562 1.9451 0.2057 26.4951 22.1221 31.4847 8.9640 26.2418 18.1760 44.0356 13.5401 28.9836 25.9879 38.4722 20.1731 28.2694 29.0011 32.1910 5.8699 36.4863 29.7284 0.9718 28.1477 8.9586 24.6635 16.5618 23.6143 10.5597 15.1178 50.2111 10.2944 8.1519 9.5325 22.1075 18.5569 0.1215 18.8726 48.2077 16.8889 31.9499 17.6309 0.7732 0.4656 47.4134 23.7783 41.8671 3.5667 43.5474 3.9061 5

Apriori算法实验报告

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

题 目学生姓名学生学号专业班级指导教师

Apriori算法实现

2014-12-27

实验一 Apriori算法实现

一、 实验目的

1. 加强对Apriori算法的理解;

2. 锻炼分析问题、解决问题并动手实践的能力。

二、 实验要求

使用一种你熟悉的程序设计语言,如C++或Java,实现Apriori算法,至少在两种不同的数据集上比较算法的性能。

三、 实验环境

Win7 旗舰版 + Visual Studio 2010 语言:C++

四、 算法描述

1、 Apriori算法说明

在Apriori算法中,寻找频繁项集的基本思想是:

A. 简单统计所有含一个元素项目集出现的频率,找出不小于最小支持度的

项目集, 即频繁项集;

B. 从第二步开始,循环处理直到再没有最大项目集生成。循环过程是: 第

k步中, 根据第k-1步生成的频繁(k-1)项集产生侯选k项集。根据候选k项集,算出候选k项集支持度,并与最小支持度比较, 找到频繁k项集。 下文中遇到的以下符号,分别代表相应的内容 k-itemset k项集

Lk 频繁k项集 Ck 侯选k项集

2、 Apriori算法描述

数据结构说明

double minsup; //设置最

java实现银行家算法

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

实验名称 银行家算法

一、实验目的

用高级语言编写和调试一个银行家算法程序,并可以利用银行家算法模拟分配资源以及进行安全性检查。加深对银行家算法的理解。

二、实验指导

1. 银行家算法中的数据结构

(1) 可利用资源向量Available。这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。

(2) 最大需求矩阵Max。这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。

(3) 分配矩阵Allocation。这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K

(4) 需求矩阵Need。这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。

Need[i,j]=Max[i,j]-

java实现银行家算法

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

实验名称 银行家算法

一、实验目的

用高级语言编写和调试一个银行家算法程序,并可以利用银行家算法模拟分配资源以及进行安全性检查。加深对银行家算法的理解。

二、实验指导

1. 银行家算法中的数据结构

(1) 可利用资源向量Available。这是一个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系统中所配置的该类全部可用资源的数目,其数值随该类资源的分配和回收而动态地改变。如果Available[j]=K,则表示系统中现有Rj类资源K个。

(2) 最大需求矩阵Max。这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。

(3) 分配矩阵Allocation。这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K

(4) 需求矩阵Need。这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。

Need[i,j]=Max[i,j]-

RSA加密算法java编程实现

标签:文库时间:2025-01-25
【bwwdw.com - 博文网】

一、 RSA加密算法的原理

(1)、RSA算法描述

RSA公钥密码体制的基本原理:根据数论,寻求两个大

素数比较简单,而将他们的乘积分解开则极为困难。 (2)、RSA算法密钥计算过程:

1.用户秘密选取两个大素数 p 和 q,计算n=pq,n称为RSA算法的模数,公开。

2.计算出n的欧拉函数?(n) = (p-1)×(q-1),保密。 3.从(1, ?(n))中随机地选择一个与?(n)互素的数e作为加密密钥,公开。

4.计算出满足下式的 d 作为解密密钥,保密。

ed=1 mod ?(n) (3)、RSA算法密钥:

加密密钥PK = |e, n| 公开 解密密钥SK = |d, n| 保密 (4)、RSA算法加密解密过程:

RSA算法属于分组密码,明文在加密前要进行分组,分组的值 m 要满足:0 < m < n 加密算法:C = E(m) ≡ me mod n

解密算法:m = D(c) ≡ cd mod n

(5)、RSA算法的几点说明:

1.对于RSA算法,相同的明文映射出相同的密文。

2.RSA算法的密钥长度:是指模数n的长度,即n的二进制位数,而不是e或d的长度。

3.RS