经济数学公式汇总
“经济数学公式汇总”相关的资料有哪些?“经济数学公式汇总”相关的范文有哪些?怎么写?下面是小编为您精心整理的“经济数学公式汇总”相关范文大全或资料大全,欢迎大家分享。
高中数学公式汇总
皖西学院 计算机网络 程 坤
高中数学第一章-集合
榆林教学资源网 http://www.ylhxjx.com 考试内容:
集合、子集、补集、交集、并集.
逻辑联结词.四种命题.充分条件和必要条件. 考试要求: 榆林教学资源网 http://www.ylhxjx.com
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.
§01. 集合与简易逻辑 知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A?A; ②空集是任何集合的子集,记为??A; ③空集是任何非空集合的真子集; 如果A?B,同时B?A,那么A = B. 如果A?B
高中数学公式汇总
1. 2.3.4.集合
个.
,.
.
的子集个数共有
个;真子集有
个;非空子集有
个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式(2)顶点式(3)零点式4切线式:设为此式 6.解连不等式
常有以下转化形式
;
;当已知抛物线的顶点坐标
时,设为此式
时,设为此式
时,
;当已知抛物线与轴的交点坐标为
。当已知抛物线与直线
相切且切点的横坐标为
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值 二次函数具体如下: (1)当a>0时,若
,则
;
在闭区间
上的最值只能在
处及区间的两端点处取得,
,,.
(2)当a<0时,若,则,
若
9.一元二次方程
,则,
=0的实根分布
1
.
1方程2方程
在区间在区间
内有根的充要条件为内有根的充要条件为
或;
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。
的子区间
。
(3) 在给定区间
。
(4) 在给定区间
。
对于参数及函数若若函数11.真值表 p q 真 真 真 假 假 真 假 假
2
,,不同上含参数的不等式(为参
数)恒成立的充要条件是(2)在给定区间
上含参数的不等式(为参数)恒成立的充要条件是
的子区间上
理科高中数学公式汇总
高中数学基础知识公式 第一章 集合与简易逻辑 1、 集合
(1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。 集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。 (2)、集合的表示法:列举法()、描述法()、图示法();
(3)、集合的分类:有限集、无限集和空集(记作?,?是任何集合的子集,是任何非空集合的真子集);
(4)、元素a和集合A之间的关系:a∈A,或a?A;
(5)、常用数集:自然数集:N ;正整数集:N;整数集:Z ;整数:Z;有理数集:Q;实数集:R。 2、子集
(1)、定义:A中的任何元素都属于B,则A叫B的子集 ;记作:A?B, 注意:A?B时,A有两种情况:A=φ与A≠φ
(2)、性质:①、A?A,??A;②、若A?B,B?C,则A?C;③、若A?B,B?A则A=B ; 3、真子集
(1)、定义:A是B的子集 ,且B中至少有一个元素不属于A;记作:A?B; (2)、性质:①、A??,??A;②、若A?B,B?C,则A?C; 4、补集
①、定义:记作:CUA?{x|x?U,且x?A};
②、性质:A?CUA??,A?CUA?U,
高中数学公式汇总- 副本
高中数学公式结论大全
1.
,
.
2..
3.
4.集合
个.
的子集个数共有 个;真子集有个;非空子集有个;非空的真子集有
5.二次函数的解析式的三种形式 (1)一般式
;
(2)顶点式;当已知抛物线的顶点坐标时,设为此式
(3)零点式;当已知抛物线与轴的交点坐标为时,设为此式
4切线式:设为此式 6.解连不等式
。当已知抛物线与直线相切且切点的横坐标为时,
常有以下转化形式
.
7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值
二次函数具体如下:
在闭区间上的最值只能在处及区间的两端点处取得,
(1)当a>0时,若,则;
,,.
(2)当a<0时,若,则,
若,则,.
9.一元二次方程=0的实根分布
1方程在区间内有根的充要条件为或;
2方程在区间内有根的充要条件为
或或;
3方程在区间内有根的充要条件为或 .
10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间
的子区间形如
。 ,
,
不同上含参数的不等式
(为参
数)恒成立的充要条件是
(2)在给定区间
。
的子区间上含参数的不等式(为参数)恒成立的充要条件是
(3) 在给定区间
。
的子区间上含参数的不等式(为参数)的有解充要条件是
(4) 在给定区间
。
的子区间上含参数的不等式(
一至六年级数学公式,小学数学公式汇总
一至六年级数学公式,小学数学公式汇总
这是一篇关于小学一年级数学公式,一至六年级数学公式,小学数学公式汇总的文章。这是石头老师精心整理的一份小学一年级到六年级数学常用数学公式,感兴趣的老师,学生或者家长可以看一下。 一、基本公式: 1 .每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2. 1倍数×倍数=几倍数 几倍数÷……
这是石头老师精心整理的一份小学一年级到六年级数学常用数学公式,感兴趣的老师,学生或者家长可以看一下。
第一部分: 概念
1,加法交换律:两数相加交换加数的位置,和不变.
2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.
3,乘法交换律:两数相乘,交换因数的位置,积不变.
4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.
如:(2+4)×5=2×5+4×5
6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. o除以任何不是o的数都得o.
数学公式及知识点汇总
平面解析几何
简易逻辑
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q” 逆命题: “若q,则p” 否命题:“若?p,则?q” 逆否命题:“若?q,则?p” 4、四种命题的真假性之间的关系:
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p?q,则p是q的充分条件,q是p的必要条件. 若p?q,则p是q的充要条件(充分必要条件).
利用集合间的包含关系: 例如:若A?B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
6、逻辑联结词:⑴且(and) :命题形式p?q;⑵或(or):命题形式p?q; ⑶非(not):命题形式?p.
p?q p p?q ?p q 真 真 假 假 真 假 真 假 真 假 假 假 真 真 真 假 假 假 真 真 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示;
全称命题p:?x?M,p(x); 全称命题p的否定?p:?x?M,?p(x)。 ⑵存在
考研数学公式手册
考研数学公式
三角函数公式
两角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB
tanA?tanBtanA?tanBtan(A+B) = tan(A-B) =
1-tanAtanB1?tanAtanBcotAcotB-1cotAcotB?1cot(A+B) = cot(A-B) =
cotB?cotAcotB?cotA
倍角公式
2tanAtan2A = Sin2A=2SinA?CosA
1?tan2ACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A
三倍角公式
sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA
??tan3a = tana·tan(+a)·tan(-a)
33
半角公式 sin(
AAA1?cosA1?cosA1?cosA)= cos()= tan()= 222221?cosAAA1
离散数学公式
1
SpongeBob SquarePants
基本等值式
1.双重否定律 A ? ┐┐A 2.幂等律 3.交换律 4.结合律
A ? A∨A,
A ? A∧A
A∧B ? B∧A
A∨B ? B∨A,
(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C) A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律)
A∨(A∧B) ? A,A∧(A∨B) ? A A∨1 ? 1,A∧0 ? 0 A∨0 ? A,A∧1 ? A A∨┐A ? 1 A∧┐A ? 0 A→B ? ┐A∨B A?B ? (A→B)∧(B→A) A→B ? ┐B→┐A (A→B)∧(A→┐B) ? ┐A
5.分配律 A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律) 6.德·摩根律 ┐(A∨B) ? ┐A∧┐B ┐(A∧B) ? ┐A∨┐B 7.吸收律 8.零律
9.同一律 11.矛盾律
10.排中律 12.蕴涵等值式 13.等价等值式 14.假言
小学数学公式大全
小学数学公式大全
小学数学公式大全
一、小学数学几何形体周长 面积 体积计算公式
长方形的周长=(长+宽)×2 C=(a+b)×2
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
直径=半径×2 d=2r 半径=直径÷2 r= d÷2
圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h
大学数学公式大全
篇一:大学数学公式总结
高等数学公式
导数公式:
(tgx)??secx(ctgx)???cscx(secx)??secx?tgx(cscx)???cscx?ctgx(ax)??axlna
1
(logax)??
xlna
基本积分表:
三角函数的有理式积分:
2
2
(arcsinx)??
1
?x2
1
(arccosx)???
?x21
(arctgx)??
1?x2
1
(arcctgx)???
1?x2
?tgxdx??lncosx?C?ctgxdx?lnsinx?C
?secxdx?lnsecx?tgx?C?cscxdx?lncscx?ctgx?C
dx1x
?arctg?C?a2?x2aadx1x?a
?ln?x2?a22ax?a?Cdx1a?x
?ln?a2?x22aa?x?Cdxx
?arcsin?C?a2?x2
a
?2
n
dx2
?cos2x??secxdx?tgx?Cdx2
?sin2x??cscxdx??ctgx?C
?secx?tgxdx?secx?C?cscx?ctgxdx??cscx?C
ax
?adx?lna?C
x
?shxdx?chx?C?chxdx?shx?C?
dxx2?a2
?ln(x?x2?a2)?C
?2
In??sinxdx??cosnxdx?
n?1
In?2n
???
x2a22