高中正弦函数图像及性质
“高中正弦函数图像及性质”相关的资料有哪些?“高中正弦函数图像及性质”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中正弦函数图像及性质”相关范文大全或资料大全,欢迎大家分享。
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
3.6正弦函数、余弦函数的图像和性质
3.6正弦函数、余弦函数的图像和性质
教学目标:
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像;
2.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数的简图;
3.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期;
4.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力。
教学重点:正弦函数、余弦函数的图象形状及其主要性质(包括定义域、值域、周期性、奇偶性、单调性)
教学难点:1.利用正弦线画出函数y=sinx,x∈[0,2π]的图象; 2.利用正弦曲线和诱导公式画出余弦曲线; 3.周期函数与(最小正)周期的意义。 教学过程:
一、复习引入:
1.引进弧度制以后,y=sinx和y=cosx都可以看做是定义域为(-∞,+∞)的实变量函数。作为函数,我们首先要关注其图像特征。本节课我们一起来学习作正、余弦函数图像的方法。
2.复习正弦线、余弦线的概念
前面我们已经学习过三角函数线的概念及作法,请同学们回忆一下什么叫正弦线?什么叫余弦线?
设任意角α的终边与单位圆相交于点P(x,y),过点P作x轴的垂
正弦函数余弦函数的图像和性质(2)
第二课时 正弦函数、余弦函数的图象与性质(二)
(一)复习与引入 上节课,我们学习了两种作正余弦函数的图象的方法,其中我们经常要用到的是五点法作图。(一图了事)
教师在黑板上用五点法画出函数y=sinx,y=cosx的图象(列表、描点、连线),同时说明五个关键点的坐标。强调作正余弦函数要抓住五个关键点。 (二)新课
一、正余弦函数作图 例1 画出下列函数的简图 (1)y=1+sinx,x∈[0,2π]; 说明:
1、第(1)题由教师演示(列表,描点,作图),第(2)题由学生自行完成,教师校对; 2、作正弦、余弦函数的图象必须抓住五个关键点;
3、第(1)题中的函数与函数y=sinx,x∈[0,2π]的图象之间有何关系?(由函数y=sinx,x∈[0,2π]上的每一点向上平移一个单位长度或图象向上平移一个单位长度)第(2)题中的函数与函数y=cosx,x∈[0,2π]的图象之间有何关系?(关于x轴对称)
4、口答:请根据函数y=sinx,y=cosx的图象,画出函数y=sinx-1,y=1-cosx的图象。 5、推广并归纳:y=sinx+m,y=cosx+n可由y=sinx,y=cosx经过怎样的变换而得到?(在y轴上平行移动)若在自变量
5.2正弦函数余弦函数的图像和性质
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质
潘老师课件
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
正弦函数余弦函数的图象和性质(一 正弦函数余弦函数的图象和性质 一)
复习回顾 思考导学 学习新课 课时小结0
y
x
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.
sin a, cosa, tan a 的几何意义是什么?yT
1
PA
正弦线MP
o
M
1
x
余弦线OM
正切线AT
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
y = x2 2x的图象 2.如何用描点法作出函数 如何用描点法作出函数 图象? 如何用(1)列表 列表
1 0 1 2 y = x 2 2x 3 0 1 0
x
3 31 2 1 0
y
(2) 描点
.
1
(3)连线 连线
.
2
.
x返回
高中数学精品题库=复习题+练习题如果要有更加详细的资料。请按照文档的联系方式联系!
1.能否用描点法作函数 y =sin x, x∈[0 2 ]的图象 能否用描点法作函数 能否用 , π 图象?只要能够确定该图象上的点 (x,sin
正弦、余弦、正切函数的图像与性质
正弦、余弦、正切函数的图像与性质
一、选择题:
1.函数y=sinx
2+cosx
是( )
A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数 2.下列关系式中正确的是( )
A.sin11°<cos10°<sin168° B.sin168°<sin11°<cos10° C.sin11°<sin168°<cos10° D.sin168°<cos10°<sin11° 3.已知函数f(x)=sin??x-π
2??(x∈R),下面结论错误的是( ) A.函数f(x)的最小正周期为2πB.函数f(x)在区间??0,π
2??上是增函数 C.函数f(x)的图像关于直线x=0对称D.函数f(x)的奇函数
4.设a=log?1sin81?,b=log1sin25,c=log1cos25°,则它们的大小关系为( )
222A.a<c<bB.b<c<aC.a<b<cD.b<a<c 5.函数y=lncosx??-π2
<x<π
2??的图像是( )
A. BC. D.
6.当-π2<x<π
2
时,函数y=tan|x|的图像( )
A.关于原点对称 B.关于x轴对称C.关于y轴对称D.不是对称图形 7.函数y=
正弦函数的图像和性质习题课
神木四中高一数学必修四第一章导学案 班级: 组名: 姓名:
第四节 正弦函数的图像与性质(习题课)
编写:史会婷 审核:薛向荣 时间:2013.3.28
学习目标:
1、会作出正弦函数的图像,明确图像的形状。 2、会运用正弦函数的图像和性质解决相关问题
3求满足2sinx 1 0的x的取值集合。
4函数y
sinxcosx
的值域。
|sinx||cosx|
学习重点:
正弦函数图像和性质的运用。
学习难点:
正弦函数图像和性质的运用。
第三部分 课堂练习
1 函数y sin(x A
线第一部分 自主学习
1 作出正弦函数y sinx图像。
2 根据正弦函数的图像写出它的基本性质。
4
),x [0,2 ]的图像与x轴交点的横坐标是()
3 7 3 3 5 或 C 或 D 或 442244
5
或44
B
2 下列函数与y sinx(x 0)的图像相同的是()
A y sin(x )(x 0) B y sin(x )(
高一三角函数《4.8正弦函数、余弦函数的图像和性质》教案
4.8正弦函数、余弦函数的图像和性质
教学目标
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像; 2.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期,了解奇偶函数的意义,能判断函数的奇偶性;
3.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力; 4.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图;
5.通过本节的学习培养学生的化归能力、转化思想.
教学建议
知识结构:
重点与难点分析:
本节重点是正弦函数、余弦函数的图像形状及其主要性质(定义域、值域、最值、周期性、奇偶性、单调性).正弦、余弦函数在实际生活中应用十分广泛,函数的图像和性质是应用的重要基础,也是解决三角函数的综合问题的基础,它能较好的综合三角变换的所有内容,可进一步深入研究其它函数的相关性质.函数图像可以直观的反映函数的性质,因此首先要掌握好函数图像形状特点,使学生将数、形结合对照掌握这两个函数.
本节难点是利用正弦线画出函数 的图像,利用正弦曲线和诱导公式画出余弦曲线,周期函数与最小正周期意义的理解.利
高一三角函数《4.8正弦函数、余弦函数的图像和性质》教案
4.8正弦函数、余弦函数的图像和性质
教学目标
1.会用单位圆中的三角函数线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像; 2.了解周期函数与最小正周期的意义,会求y=Asin(ωx+ψ)的周期,了解奇偶函数的意义,能判断函数的奇偶性;
3.通过正弦、余弦函数图像理解正弦函数、余弦函数的性质,培养学生的数形结合的能力; 4.简化正弦、余弦函数的绘制过程,会用“五点法”画出正弦函数、余弦函数和函数y=Asin(ωx+ψ)的简图;
5.通过本节的学习培养学生的化归能力、转化思想.
教学建议
知识结构:
重点与难点分析:
本节重点是正弦函数、余弦函数的图像形状及其主要性质(定义域、值域、最值、周期性、奇偶性、单调性).正弦、余弦函数在实际生活中应用十分广泛,函数的图像和性质是应用的重要基础,也是解决三角函数的综合问题的基础,它能较好的综合三角变换的所有内容,可进一步深入研究其它函数的相关性质.函数图像可以直观的反映函数的性质,因此首先要掌握好函数图像形状特点,使学生将数、形结合对照掌握这两个函数.
本节难点是利用正弦线画出函数 的图像,利用正弦曲线和诱导公式画出余弦曲线,周期函数与最小正周期意义的理解.利