高中数学线面平行的性质定理

“高中数学线面平行的性质定理”相关的资料有哪些?“高中数学线面平行的性质定理”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学线面平行的性质定理”相关范文大全或资料大全,欢迎大家分享。

2.2.3_线面平行的性质定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

2.2.3 线面平行的性质定理

必修2

第二章

点、直线、平面之间的位置关系

复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。

复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)

具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系

思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c

b

那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系

思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?

l

a

a

如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系

探研新知

已知:如图,a∥α , a β ,α

2.2.3_线面平行的性质定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

2.2.3 线面平行的性质定理

必修2

第二章

点、直线、平面之间的位置关系

复习1:直线和平面的位置关系1、直线和平面有哪几种位置关系? 平行、相交、直线在平面内 2、反映直线和平面三种位置关系的依据是什么? 公共点的个数 1.直线在平面内——有无数个公共点; 2.直线与平面相交——有且只有一个公共点; 3.直线与平面平行——没有公共点。

复习2:面面平行的判定定理判定定理:平面外一条直线与此平面内一条直线平行,则该 直线与此平面平行.(线线平行,线面平行)

具备的条件是: 一线在平面外,一线在平面内;两直线互相平行。必修2 第二章 点、直线、平面之间的位置关系

思考:如果一条直线与平面平行,那么这条直线是否与这平面内的所有直线都 平行?a c

b

那么直线a会与平面 内那些线平行呢?必修2 第二章 点、直线、平面之间的位置关系

思考: 教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯 管所在的直线平行? 怎样作平行 线?

l

a

a

如果一条直线和一个平面平行,经过这条直 线的平面和这个平面相交,那么这条直线和交线 试用文字语言将上述原理表述成一个命题. 平行.必修2 第二章 点、直线、平面之间的位置关系

探研新知

已知:如图,a∥α , a β ,α

高中数学联赛常用定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

常用定理

1、费马点 (I)基本概念

定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明

我们要如何证明费马点呢:

费马点证明图形

(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度

又∠BPA=120度,因此A、P、D三点在同一直线上,

又∠CPB=∠A1DB=120度,∠PDB=60度,∠P

高中数学联赛常用定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

常用定理

1、费马点

(I)基本概念

定义:在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。

(1)若三角形ABC的3个内角均小于120°,那么3条距离连线正好平分费马点所在的周角。所以三角形的费马点也称为三角形的等角中心。

(2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。

(II)证明

我们要如何证明费马点呢:

费马点证明图形

(1)费马点对边的张角为120度。

△CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1,

△CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B

同理可得∠CBP=∠CA1P

由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度

同理,∠APB=120度,∠APC=120度

(2)PA+PB+PC=AA1

将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度

又∠BPA=120度,因此A、P、D三点在同一直线上,

又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。

(3)PA+PB+PC

高中数学公式-定理-复习指南

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

篇一:高一数学公式·定理复习资料大全

2012年高一暑假数学复习内容

必修5

第一章:解三角形

掌握:正弦定理:

abc

???2R.(R为?ABC外接圆的半径,). sinAsinBsinC

?a?2RsinA,b?2RsinB,c?2RsinC?a:b:c?sinA:sinB:sinC

b2?c2?a2

余弦定理:a?b?c?2bccosA?cosA?;

2bc

2

2

2

a2?c2?b2

b?c?a?2cacosB?cosB?;

2ac

2

2

2

a2?b2?c2

c?a?b?2abcosC?cosC?

2ab

2

2

2

面积公式:⑴S?⑵S?

111

aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222

111

absinC?bcsinA?casinB 222

两角和差公式:sin(???)?sin?cos??cos?sin?;

cos(???)?cos?cos??sin?sin?;

倍角公式:sin2??sin?cos?;cos2??cos2??sin2??2cos2??1?1?2sin2?; 降幂扩角公式:cos2??

1?cos2?1?cos2?1

;sin2??;sin?cos??sin2? 222

sin?

cos?

同角三角函数关系式:sin2??cos2??1,t

高中数学例题:平面与平面平行的判定

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

第 1 页 共 3 页 高中数学例题:平面与平面平行的判定

例4.已知正方体ABC D —A 1B 1C 1D 1,求证:平面AB 1D 1∥平面BDC 1.

【解析】要证明两个平面平行,由面面平行的判定定理知:须在某一平面内寻找两条相交且都与另一平面平行的直线.

【证明】如图,∵AB //A 1B 1,C 1D 1//A 1B 1,∴AB //C 1D 1,

∴四边形ABC 1D 1为平行四边形,∴AD 1∥BC 1.

又AD 1?平面AB 1D 1,BC 1?平面AB 1D 1,

∴BC 1∥平面AB 1D 1.

同理,BD ∥平面AB 1D 1,

又BD ∩BC 1=B ,∴平面AB 1D 1∥平面BDC 1.

【总结升华】利用面面平行的判定定理判定两个平面平行的程序是:(1)在第一个平面内找出(或作出)两条平行于第二个平面的直线;(2)说明这两条直线是相交直线;(3)由判定定理得出结论. 例5.如右图,正方体ABCD —A 1B 1C 1D 1中,M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、B 1C 1、C 1D 1的中点.

求证:平面AMN ∥平面EFDB .

【证明】连接MF ,

∵M 、F 分别是A 1B 1、C 1D 1的中点,

高中数学 必修二 同步练习 专题2.2.3 直线与平面平行的性质、平面与平面平行的性质(原卷版)

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

高中数学必修二人教版同步练习

一、选择题

1.已知,a b 表示直线,,,αβγ表示平面,则下列说法中正确的是

A .,a b α

βα=?,则a b ∥ B .a αβ=,a b ∥,则b α∥且b β∥

C .,,,a b a b ββαα??∥∥,则αβ∥

D .αβ∥,a αγ=,b βγ=,则a b ∥

2.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为

A .都平行

B .都相交且一定交于同一点

C .都相交但不一定交于同一点

D .都平行或交于同一点 3.在空间四边形ABCD 中,

E 、

F 、

G 、

H 分别是AB 、BC 、CD 、DA 上的点,当BD ∥平面EFGH 时,下

面结论正确的是

A .E 、F 、G 、H 一定是各边的中点

B .G 、H 一定是CD 、DA 的中点

C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GC

D .A

E ∶EB =AH ∶HD ,且B

F ∶FC =D

G ∶GC

4.在长方体1111ABCD A B C D -中,若经过D 1B 的平面分别交AA 1和CC 1于点E ,F ,则四边形1D EBF 的

形状是

A .矩形

B .菱形

C .平行四边形

D .正方形

高中数学竞赛平面几何基本定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

篇一:个人精心整理!高中数学联赛竞赛平面几何四大定理~及考纲

一、

1. 梅涅劳斯定理

平面几何

证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时,

(AD/DB)*(BE/EC )*(CF/FA)=1

逆定理证明:

证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1

证明一

过点A作AG∥BC交DF的延长线于G,

则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG

三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1

证明二

过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF

所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1

证明四

过三顶点作直线DEF的垂线,AA‘,BB',CC'

有AD:DB=AA’:BB' 另外两个类似, 三式相乘得1

得证。如百科名片中图。

※ 推论 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是

λ=BL/LC、μ=CM/MA、ν=AN/NB。于是A

高中数学常用平面几何名定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。

定理2 Ceva定理

定理3 Menelaus定理

定理4 蝴蝶定理定理

内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

定理5 张角定理

在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD

定理6 Simon line西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

定理7 Eular line:

同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半

定理8 到三角形三定点值和最小的点——费马点

已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。

定理9 三角形内到三边距离之积最大的点是三角形的重心

定理1

高中数学联赛平面几何定理

标签:文库时间:2024-11-20
【bwwdw.com - 博文网】

①鸡爪定理:设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC。

由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=(180°-∠ABC)/2 ∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ 同理,∠ICJ=90° ∵∠IBJ+∠ICJ=180°

∴IBJC四点共圆,且IJ为圆的直径 ∵AK平分∠BAC

∴KB=KC(相等的圆周角所对的弦相等)

又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB ∴KB=KI

∵IBJC四点共圆 且 KB=KI=KC

∴点K是四边形IBJC的外接圆的圆心(只有圆心满足与圆周上超过三个以上的点的距离相等) ∴KB=KI=KJ=KC

鸡爪定理逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K。在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部。则I是△ABC的内心,J是△ABC的旁心。 证明:利用同一法可轻松证明该定理的逆定理。

取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ' 又∵KB=KI=KJ

∴I和I'重合,J和J’重合 即I和J分别