向量证明几何问题

“向量证明几何问题”相关的资料有哪些?“向量证明几何问题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“向量证明几何问题”相关范文大全或资料大全,欢迎大家分享。

向量法证明几何命题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

毕 业 论 文

论文题目 向量法证明初等几何命题 学 院 数学与统计学院 专 业 数学与应用数学 年 级 2011级 学 号 201124081124 学生姓名 陈平 指导教师 张峰 完成时间 2015 年 4 月

肇庆学院教务处制

向量法证明初等几何命题

陈平

摘 要 本文使用向量的数量积,向量积,混合积证明一些初等几何的命题.例如,勾股定理,余弦定理,海伦公式.

关键词 初等几何;数量积;向量积;混合积

1引言

向量这个名词对于大家来说并不陌生,在高中的教材中已经接触了不少向量的内容.在力学、物理学已及日常生活中,咱们常常遇到很多的量,譬如像温度、时间、质量、密度、功、长度、面积与体积等,这些量在规定的单位下,都可以由一个数来完全确定,这种只有大小的量叫做数量.其余又有一些比较复杂的量,比方像位移、力、速度、加速度等,他们不仅有大小,而且还有方

解析几何证明问题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

解析几何证明问题

x2y261、 已知椭圆T:2?2?1(a?b?0)的一个顶点A?0,1?,离心率e?,圆C:x2?y2?4,从圆C上任意一点

ab3P向椭圆T引两条切线PM,PN.

(1)求椭圆T的方程; (2)求证:PM?PN.

x2c6?y2?1 --------------4分 解:(Ⅰ) 由题意可知:b?1,?椭圆方程为:3a3 (Ⅱ)法1:(1) 当P点横坐标为?(2) 当P点横坐标不为?3时,PM斜率不存在,PN斜率为0,PM?PN----------5分

223时,设P(x0,y0),则x0?y0?4,设kPM?k

?y?y0?k(x?x0)?PM的方程为y?y0?k(x?x0),联立方程组 ?x2

2??y?1?322消去y得:(1?3k2)x2?6k(y0?kx0)x?3k2x0?6kx0y0?3y0?3?0 ------6分 22依题意:??0即??36k2(y0?kx0)2?41?3k23k2x0?6kx0y0?3y0?3?0 ---------8分 22化简得:(3?x0)k2?2x0y0k?1?y0?0

2221?y01?(4?x0)x0?3?????1 2223?x03?x03?x0

解析几何证明问题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

解析几何证明问题

x2y261、 已知椭圆T:2?2?1(a?b?0)的一个顶点A?0,1?,离心率e?,圆C:x2?y2?4,从圆C上任意一点

ab3P向椭圆T引两条切线PM,PN.

(1)求椭圆T的方程; (2)求证:PM?PN.

x2c6?y2?1 --------------4分 解:(Ⅰ) 由题意可知:b?1,?椭圆方程为:3a3 (Ⅱ)法1:(1) 当P点横坐标为?(2) 当P点横坐标不为?3时,PM斜率不存在,PN斜率为0,PM?PN----------5分

223时,设P(x0,y0),则x0?y0?4,设kPM?k

?y?y0?k(x?x0)?PM的方程为y?y0?k(x?x0),联立方程组 ?x2

2??y?1?322消去y得:(1?3k2)x2?6k(y0?kx0)x?3k2x0?6kx0y0?3y0?3?0 ------6分 22依题意:??0即??36k2(y0?kx0)2?41?3k23k2x0?6kx0y0?3y0?3?0 ---------8分 22化简得:(3?x0)k2?2x0y0k?1?y0?0

2221?y01?(4?x0)x0?3?????1 2223?x03?x03?x0

巧构几何图形 证明代数问题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

巧构几何图形 证明代数问题

——兼谈构造法

习题 已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析 注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ? ac=bd,即 BC*AD=AB*CD ? BC/AB=CD/AD 又?B=?D=90 ??

?Rt⊿ABC 相似于 Rt⊿ADC

但为公共斜边,故 Rt⊿ABC? Rt⊿ADC

?AB=AD,BC=CD,即b=c,a=d.

评注 把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用

几何证明依据

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

几何证明、求值依据

④证明一个平面的法向量垂直于另一个平面内的两条不共线向量(需说明两个平面不重合).

有法可依、有理可据

1、证明线线平行常用的方法:

①基本性质4;

②直线与平面平行的性质定理;

③两个平面平行的性质定理;

④直线和平面垂直的性质定理;

⑤平面几何中的定理等;

⑥证明两条直线的方向向量共线(需说明它们不重合).

4、证明线线垂直常用的方法:

①一条直线垂直于一个平面,它就和平面内的任意一条直线都垂直;

②如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;

③三垂线定理(逆定理);

④勾股定理;

⑤一些常见平面几何图形(需简单证明); ⑥证明两条直线的方向向量垂直.

2、证明线面平行常用的方法:

①直线与平面平行的判定定理;

②如果两个平面平行,其中一个平面内的直线平行于另一个平面;

③证明直线的方向向量与平面的法向量垂直(需说明直线不在平面内);

④证明直线的方向向量可以被平面内的两个不共线向量分解(需说明直线不在平面内).

5、证明线面垂直常用的方法:

①直线和平面垂直的判定定理;

②两个平面垂直的性质定理;

③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面;

用向量解决解析几何中角的有关问题

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

用向量解决解析几何中“角”的有关问题

同济二附中 钱嵘

向量(vector)又称矢量,即既有大小又有方向的量叫做向量。希腊的亚里士多德(前384-前322)已经知道力可以表示成向量,德国的斯提文(1548?-1620?)在静力学问题上,应用了平行四边形法则。伽利略(1564-1642)清楚地叙述了这个定律。稍后丹麦的未塞尔(1745-1818),瑞士的阿工(1768-1822)发现了复数的几何表示,德国高斯(1777-1855)建立了复平面的概念,从而向量就与复数建立了一一对应,这不但为虚数的现实化提供了可能,也可以用复数运算来研究向量。

向量是高中数学新教材与高中数学课程标准中新增内容,向量的应用是一种新的思想方法,由于常规视角的转变,形成了新的探索途径,容易激发并凝注学生的参与,探索新的解题途径,展示各自的思维能力和创新意识。

向量具有代数与几何形式的双重身份,它可以作为新旧知识的一个重要的交汇点,成为联系这些知识的桥梁,因此,向量与解析几何或三角的交汇是当今高考命题的必然趋势.

本文主要从“角”的角度关注了一些近年来与向量相关的高考题,浅析了一些命题趋势,希望为向量教学或复习带来一些帮助。 一.用来证明直线间的垂直关系

例题1. (20

初中几何证明

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第1篇:初中几何证明

初中数学几何解题思路

从求证出发

你就要想,这道题要求证这个,就要有.....这些条件,再看已知,有了这些条件了,噢,还差这个条件。然后就找条件来证明这个还差的条件,

然后全部都搭配齐全了,就证出了题目了

记住,做题要倒推走

把已知的条件从笔在图上表示出来,方便分析

而且你要牢牢记住一些定理,还有一些特殊角,特殊形状等等他们的关系 当一些题实在证不出来时, 你要注意了,可能要添辅助线,比如刚才我说的 还差什么条件,你就可以画一个线段,平行线什么的来补充条件,你下子你就一目了然了,不过有些很难的看出的辅助线就要靠你的做题的作战经验了,你还要认真做题。

把这些牢牢记住,在记住老师教你们的公里定理些,你就已经成功大半了 作辅助线的方法和技巧

题中有角平分线,可向两边作垂线。

线段垂直平分线,可向两端把线连。

三角形中两中点,连结则成中位线。

三角形中有中线,延长中线同样长。

成比例,正相似,经常要作平行线。

圆外若有一切线,切点圆心把线连。

如果两圆内外切,经过切点作切线。

两圆相交于两点,一般作它公共弦。

是直径,成半圆,想做直角把线连。

作等角,添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关

立体几何中的向量方法之方向向量与法向量

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

3.2立体几何中的向 量方法---------方向向量与法向量

一、方向向量与法向量 1.直线的方向向量如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。

换句话说,直线上的非零向量叫做直线的 方向向量

A

l

a

P

直线的方向 向量不唯一

直线l的向量式方程

AP ta

练习 (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 2.已知两点 A , 点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3

2、平面的法向量

换句话说,与平面垂直的非零向量叫做平面 的法向量 平面 α的向量式方程 注:平面 α的法向量 不唯一 l

a AP 0

几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互 相平行; 3.向量n 是平面的法向量,向 量m是与平面平行或在平面内, 则有

aAP

n m 0

巩固性训练11.设

a,

空间几何中的向量方法

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

第一讲:空间几何中的向量方法---------坐标运算与法向量

一、空间向量的坐标运算

??1. 若a?(a1,a2,a3),b?(b1,b2,b3),则

(1)a?b?(a1?b1,a2?b2,a3?b3); (2)a?b?(a1?b1,a2?b2,a3?b3); (3)?a?(?a1,?a2,?a3),??R; (4)a?b?a1b1?a2b2?a3b3; (5)a//b?a1??b1,a2??b2,a3??b3,(b?0,??R); (6)a?b?a1b1?a2b2?a3b3?0; (7)a?(8)cos?a,b??22a?a?a12?a2?a3;

a1b1?a2b2?a3b3a?b. ?222222a?ba1?a2?a3?b1?b2?b3?????????例1 已知a?(2,?3,5),b?(?3,1,?4),求a?b,a?b,8a,a?b,的坐标.

????2.若A(x1,y1,z1),B(x2,y2,z2),则AB?(x2?x1,y2?y1,z2?z1)

练习1: 已知PA垂直于正方形ABCD所在的平面,M、N分别是AB,PC的中点,且PA=AD=1,

?????求向量MN的坐标.

二、空间直角坐标系中平面

立体几何中的向量方法之方向向量与法向量

标签:文库时间:2024-11-19
【bwwdw.com - 博文网】

3.2立体几何中的向 量方法---------方向向量与法向量

一、方向向量与法向量 1.直线的方向向量如图, l 为经过已知点 A 且平行于非零向量 a 的直线,那么非零向量 a 叫做直线 l 的方向向量。

换句话说,直线上的非零向量叫做直线的 方向向量

A

l

a

P

直线的方向 向量不唯一

直线l的向量式方程

AP ta

练习 (, 1 2, 3 ),( B 2, 1, 2 ),(, P 1 1, 2 ) 2.已知两点 A , 点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.解:设 OQ OP ( ) ∴ QA QB 6 16 , ∴当 时, QA QB 取得最小值, 4 4 8 此时 Q( , , ) 3 3 3

2、平面的法向量

换句话说,与平面垂直的非零向量叫做平面 的法向量 平面 α的向量式方程 注:平面 α的法向量 不唯一 l

a AP 0

几点注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量都互 相平行; 3.向量n 是平面的法向量,向 量m是与平面平行或在平面内, 则有

aAP

n m 0

巩固性训练11.设

a,