函数极限的几何意义

“函数极限的几何意义”相关的资料有哪些?“函数极限的几何意义”相关的范文有哪些?怎么写?下面是小编为您精心整理的“函数极限的几何意义”相关范文大全或资料大全,欢迎大家分享。

反比例函数k的几何意义练习

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

2016年05月17日郭媛的初中数学组卷

一.填空题(共30小题)

1.(2016 广州模拟)如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为 .

2.(2015 宁德)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则

k=.

3.(2015 南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OC是△OAB的中线,点B,C在反比例函数

y=(x>0)的图象上,则△OAB的面积等于 .

4.(2015 深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .

第1页(共10页)

5.(2015 荆门)如图,点A1,A2依次在y=(x>0)的图象上,点B1,B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为 .

6.(2015 攀枝花)如图,若双曲线y=(k>0)与边长为3的等边△AOB(O为坐标原点)的边

导数的几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

篇一:导数几何意义

1.1.3导数的几何意义

教材分析

本节内容选自数学人教A版选修2-2第1章“导数及其应用”第1.1.3“导数的几何意义”第一课时.导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 教材从形和数的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,学生通过观察、思考、发现、归纳、运用,形成完整的概念,有利于学生对知识的理解和掌握. 通过本节的学习,可以帮助学生进一步理解导数的定义,并更好的体会导数是研究函数的单调性、求解函数的极值和最值,探讨函数值变化快慢等性质最有效的工具. 课时分配

本节内容用1课时完成,主要讲解导数的几何意义,让学生知道函数在某一点处的导数就是在这一点处切线的斜率,为求函数在某点处的切线方程提供条件. 教学目标

重点:理解和掌握切线的新定义、导数的几何意义,体会数形结合、以直代曲的思想方法. 难点:对导数几何意义的理解,在某点处“附近”变化率与瞬时变化率的近似关系的理解. 知识点:深刻理解导数的几何意义以及对曲线切线方程的求解.

能力点:理解导数的几何意义,掌握应用导数几何意义求解曲线切线方程的方法.

教育点:让学生在观察,思考,发现中学习,启发学生研究问题时,抓住问题本质,严谨细

致思

复数的几何意义教案

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

复数的几何意义教案

3.1.3 复数的几何意义

1.复数的几何意义

(1)复平面的定义

建立了直角坐标系来表示复数的平面叫做复平面 ,x轴叫做实轴 ,y轴叫做 虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.

(2)复数与点、向量间的对应

①复数z=a+bi(a,b∈R)

复平面内的点 Z(a,b) ;

平面向量____OZ=(a,b)_____. ②复数z=a+bi(a,b∈R)

2.复数的模

→→

22复数z=a+bi(a,b∈R)对应的向量为OZ,则OZ的模叫做复数z的模,记作|z|,且|z|=_a+b_____.

3.共轭复数

当两个复数实部 相等 ,虚部互为相反数 时,这两个复数叫做互为共轭复数,复数z的共轭复数用z表示,即z=a+bi,那么z=a-bi ,当复数z=a+bi的虚部b=0时,有__ z=z__,也就是说,任一实数的共轭复数仍是 它本身 .

小结 建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.

问题2 怎样定义复数z的模?它有什么意义?

答 复数z=a+bi(a,b∈R)的模就是向量

3.1.2复数的几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

新课导入实数的几何意义?在几何 上,我们用 什么来表示 实数?

实数可以用数轴 上的点来表示.

实数 一一对应 数轴上的点 (数 ) (形 )

类比实数的几何意义,复数的几何意义是什么呢?

回 忆

… 复数的 一般形 式?

Z=a+bi(a, b∈R)实部 虚部

一个复数 由什么确 定?

3.1.2y b y

z=a+bi Z(a,b)b

z=a+bi Z(a,b)

o

a

x

o

a

x

教学重难点重点 对复数几何意义的理解以及复数的向 量表示.

难点 由于理解复数是一对有序实数不习惯,对 于复数几何意义理解有一定困难.

对于复数向量表示的掌握有一定困难.

探究

复数的实质是什么?

任何一个复数z=a+bi,都可以由一个 有序实数对(a,b)唯一确定.由于有序实数 对(a,b)与平面直角坐标系中的点一一对 应,因此复数集与平面直角坐标系中的 点集之间可以建立一一对应.

可用下图表示出他们彼此的关系. 有序实数对(a,b)

复数z=a+bi

一一对应

直角坐标系中的点Z(a,b)

那么现在复数z=a+bi可以在平面直 角坐标系中表示出来,如图所示: y

z=a+bib

Z(a,b)

建立了平面直角 坐标系来表示复数的 平面 ------复数平面 (简称复平面)x

o

a

x轴------实轴 y轴----

2013导数的概念及几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

高三数学新课标复习讲座之导数的概念及几何意义 石嘴山市光明中学 潘学功

导数的概念及几何意义

【基础回归】

1.函数y=(2x-1)的导数是( )

A.16x-4x

2

3

22

2

B.4x-8x

3

C.16x-8x

3

D.16x-4x

3

2.曲线y=4x-x上有两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标是( )

A.(3,3)

B.(1,3)

C.(6,-12)

D.(2,4)

3.设y=-tanx,则y′= ( ) A.?1 2cosx

B.

sinx 2cosx2

C.

1

2

1?x

2

D.-

1 21?x4.若f'(x)?x,则[xf(x)]′等于 ( )

A.xf(x)+x

B.f(x)+x

C.x

D.f(x)

5.已知f(x)?ax3?3x2?2,若f'(?1)?4,则a?( )

A.

19 3 B.

16 3 C.

13 3 D.

10 36.(2008宁夏)设f(x)?xlnx,若f'(x0)?2,则x0?( ) A. e B. e 7.(2010宁夏)曲线y?2

向量数乘运算及其几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

2.2.3 向量数乘运算及其几何意义

复习回顾:1.向量加法三角形法则特点:首尾相接C

a bA

b

2.向量加法平行四边形 法则 特点:共起点 a C B a b b

b

a

B

O

a

A

a b

3.向量减法三角形法则

b

B

O

a

A

BA a b

特点:共起点,连终点,方向指向被减向量

实际背景向量a , 那么在同方向上3秒的位移对应的向量用3a 表示,试画出该向量,看看它们有何关系?

一物体作匀速直线运动,一秒钟的位移对应

a

3a

( a) ( a) ( a) , 你能说明它们的几何意义吗?

思考:已知非零向量 a , 作出 a a a a a a a

记作 3 a O C B A OC OA AB BC a a a

记作 -3a P Q M N PN PQ QM MN ( a )( a )( a )

a

a a

一.向量数乘的

导数的概念及导数的几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

导数的概念及导数的几何意义 一.知识梳理

1、导数的概念及意义

求函数y?f(x)在x0处的导数的步骤:

(1)求函数的改变量?y?f?x0??x??f?x0?;

?y? ; ?x(3)取极限,得导数y?? .

(2)求平均变化率

特别提醒:f/(x0)的定义式并不唯一,f?(x0)?lim?x?0f(x0??x)?f(x0),也可以写成

?xf(x0)?f(x0??x)f(x)?f(x0)等形式. ,lim?x?0x?x0?xx?x0特别提醒:注意f?(x)与f?(x0)的区别与联系

曲线C:y?f(x)在点(x0,y0)处的导数的几何意义是f(x)在该点处的切线的 ,即k? .切线方程为 . 物理意义:设物体运动规律是s?s(t),则 表示物体在t=t0时刻的瞬时速度;设v?v(t)是速度函数,则 表示物体在t=t0时刻的加速度. lim2.常用导数公式

(1).若f(x)?c,则f?(x)?_______;(2).若f(x)?xn,则f?(

导数的几何意义练习题

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

导数的几何意义练习题,很好的题目

高二文科数学练习(3)----导数的几何意义2012/02/06

高二( )班 姓名

1.设,若,则a的值等于( )

A. B. C. D.

2. 在曲线上点P处的切线的倾斜角为,则点P坐标为( )

A.

3.若曲线 A

. B.在点

C.处的切线方程是 B

. D.,则( ) C

. D.

4.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则

A.f′(x0)>0 B.f′(x0)<0

C.f′(x0)=0 D.f′(x0)不存在

326.若曲线y x 1的切线垂直于直线2x 6y 3 0,试求这条切线的方程. 2

7.曲线f(x) x3在点A处的切线的斜率为3,求该曲线在A点处的切线方程.

导数的几何意义练习题,很好的题目

8.在抛物线y 2 x x2上,哪一点的切线处于下述位置?

(1)与x轴平行

(2)平行于第一象限角的平分线.

(3)与x轴相交成45°角

9.已知曲线y 2x x2上有两点A(2,0),B(1,1),求:

(1)割线AB的斜率kAB; (2)过点A的切线的斜率kAT;

(3)点A处的切线的方程.

10

向量数乘运算及其几何意义

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

2.2.3 向量数乘运算及其几何意义

复习回顾:1.向量加法三角形法则特点:首尾相接C

a bA

b

2.向量加法平行四边形 法则 特点:共起点 a C B a b b

b

a

B

O

a

A

a b

3.向量减法三角形法则

b

B

O

a

A

BA a b

特点:共起点,连终点,方向指向被减向量

实际背景向量a , 那么在同方向上3秒的位移对应的向量用3a 表示,试画出该向量,看看它们有何关系?

一物体作匀速直线运动,一秒钟的位移对应

a

3a

( a) ( a) ( a) , 你能说明它们的几何意义吗?

思考:已知非零向量 a , 作出 a a a a a a a

记作 3 a O C B A OC OA AB BC a a a

记作 -3a P Q M N PN PQ QM MN ( a )( a )( a )

a

a a

一.向量数乘的

导数概念及其几何意义、导数的运算

标签:文库时间:2025-01-17
【bwwdw.com - 博文网】

导数概念及其几何意义、导数的运算

一、选择题

1.曲线y=x3-3x2+1在点(1,-1)处的切线方程为( )

A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5

2.设函数y=xsinx+cosx的图象上的点(x,y)处的切线斜率为k,若k=g(x),则函数k=g(x)的图象大致为( )

3.一质点的运动方程为s=5-3t2,则在一段时间[1,1+Δt]内相应的平均速度为( )

A.3Δt+6 B.-3Δt+6 C.3Δt-6 D.-3Δt-6

4.曲线f(x)=ln(2x-1)上的点到直线2x-y+3=0的最短距离是…( ) A. B.2 C. D.0

5.过曲线y=x3+x-2上的点P0的切线平行于直线y=4x-1,则切点P0的坐标为( )

A.(0,-1)或(1,0) B.(1