人工神经网络算法

“人工神经网络算法”相关的资料有哪些?“人工神经网络算法”相关的范文有哪些?怎么写?下面是小编为您精心整理的“人工神经网络算法”相关范文大全或资料大全,欢迎大家分享。

bp神经网络算法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

BP神经网络算法 三层BP神经网络如图:

传递函数g 目标输出向量

tk 输出层,输出向量

zk 权值为wjk 传递函数f yj 隐含层,隐含层输出向量

权值为wij 输入层,输入向量

x1x2x3 xn

设网络的输入模式为x?(x1,x2,...xn)T,隐含层有h个单元,隐含层的输出为

y?(y1,y2,...yh)T,输出层有m个单元,他们的输出为z?(z1,z2,...zm)T,目标输出为t?(t1,t2,...,tm)T设隐含层到输出层的传递函数为f,输出层的传递函数为g

于是:yj?f(?wxi?1niji??)?f(?wijxi):隐含层第j个神经元的输出;其中

i?0nw0j???,hx0?1

zk?g(?wjkyj):输出层第k个神经元的输出

j?01m2此时网络输出与目标输出的误差为???(tk?zk),显然,它是wij和wjk的函数。

2k?1下面的步骤就是想办法调整权值,使?减小。

由高等数学的知识知道:负梯度方向是函数值减小最快的方向

因此,可以设定一个步长?,每次沿负梯度方向调整?个单位,即每次权值的调整为:

?wpq?????,?在神经网络中称为学习速率 ?wpq可以证明:按这个方法调整,误差会逐渐减

bp神经网络算法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

BP神经网络算法 三层BP神经网络如图:

传递函数g 目标输出向量

tk 输出层,输出向量

zk 权值为wjk 传递函数f yj 隐含层,隐含层输出向量

权值为wij 输入层,输入向量

x1x2x3 xn

设网络的输入模式为x?(x1,x2,...xn)T,隐含层有h个单元,隐含层的输出为

y?(y1,y2,...yh)T,输出层有m个单元,他们的输出为z?(z1,z2,...zm)T,目标输出为t?(t1,t2,...,tm)T设隐含层到输出层的传递函数为f,输出层的传递函数为g

于是:yj?f(?wxi?1niji??)?f(?wijxi):隐含层第j个神经元的输出;其中

i?0nw0j???,hx0?1

zk?g(?wjkyj):输出层第k个神经元的输出

j?01m2此时网络输出与目标输出的误差为???(tk?zk),显然,它是wij和wjk的函数。

2k?1下面的步骤就是想办法调整权值,使?减小。

由高等数学的知识知道:负梯度方向是函数值减小最快的方向

因此,可以设定一个步长?,每次沿负梯度方向调整?个单位,即每次权值的调整为:

?wpq?????,?在神经网络中称为学习速率 ?wpq可以证明:按这个方法调整,误差会逐渐减

人工神经网络实验指导

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

人工神经网络实验指导《人工神经网络》

实验指导

北京工商大学信息工程学院《人工神经网络》课程组编写

1 / 22

人工神经网络实验指导

目录

第一部分实验准备 (1)

第1章NeuDesk软件 (2)

1.1NeuDesk软件概述 (2)

1.2NeuDesk软件使用说明 (2)

1.2.1样本的输入 (2)

第2章Matlab神经网络工具箱 (6)

2.1 MATLAB 神经网络工具箱概述 (6)

2.1.1神经网络工具箱的帮助和安装 (6)

2.2 MATLAB 神经网络工具箱函数 (6)

2.2.1 网络创建函数 (6)

2.2.2 网络应用函数 (7)

2.2.3 权函数 (7)

2.2.4 网络输入函数 (7)

2.2.5 转移函数 (7)

2.2.6 初始化函数 (8)

2.2.7 性能分析函数 (8)

2.2.8 学习函数 (8)

2.2.9 自适应函数 (8)

2.2.10 训练函数 (8)

2.2.11 分析函数 (8)

2.2.12 绘图函数 (8)

2.2.13 符号变换函数 (9)

2.2.14 拓扑函数 (9)

2.3 MATLAB使用说明 (9)

2.3.1MATLAB界面 (9)

2.3.2在MATLAB环境下运行程序 (9)

第二部分实验 (13)

第3章BP网络的设计 (1

人工神经网络应用实例

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

人工神经网络在蕨类植物生长中的应用

摘要:人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。根据此特点结合蕨类植物的生长过程进行了蕨类植物生长的模拟。结果表明,人工神经网络的模拟结果是完全符合蕨类植物的生长的,可有效的应用于蕨类植物的生长预测。

关键词:人工神经网络;蕨类植物;MATLAB应用 一 人工神经网络的基本特征

1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。

3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经

人工神经网络评价法

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

人工神经网络评价法 第一节 思想和原理

在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。

人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是

人工神经网络复习题

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

《神经网络原理》

一、填空题

1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。

5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。

7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。

8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题

1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。

(5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动

基于人工神经网络的预测研究

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

目 录 1.引言.............................................................. 1

1.1 研究背景及意义 .............................................. 1 1.2 研究现状 .................................................... 2 1.3 主要研究方向 ............................................... 5 2.人工神经网络...................................................... 5

2.1人工神经网络的基本内容 ..................................... 5 2.2人工神经网络的基本特征 ..................................... 7 2.3人工神经网络的工作原理 ...................................... 8 2.4人工神经网络的分析方法 ........................

基于人工神经网络的预测研究

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

目 录 1.引言.............................................................. 1

1.1 研究背景及意义 .............................................. 1 1.2 研究现状 .................................................... 2 1.3 主要研究方向 ............................................... 5 2.人工神经网络...................................................... 5

2.1人工神经网络的基本内容 ..................................... 5 2.2人工神经网络的基本特征 ..................................... 7 2.3人工神经网络的工作原理 ...................................... 8 2.4人工神经网络的分析方法 ........................

数学建模培训--人工神经网络(2)

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

常用的人工神经网络案例

1 感知器网络MatLab上机实验

例1.1

用newp函数设计一个单输入和一个神经元的感知器神经网络,输入的最小值和最大值为?0,2?。

>> net=newp([0 2],1);

可以用下面语句来观察生成了一个什么样的神经网络。

>> inputweights = net.inputWeights{1,1}

inputweights =

delays: 0

initFcn: 'initzero' learn: 1

learnFcn: 'learnp' learnParam: [] size: [1 1]

userdata: [1x1 struct] weightFcn: 'dotprod' weightParam: [1x1 struct]

从中可以看到,缺省的学习函数为learnp,网络输入给hardlim传递函数的量为数量积dotprod,即输入量和权值矩阵的乘积,然后再加上阈值。缺省的初始化函数为initzero,即权值的初始值置为0。

同样地,

>> bias

基于人工神经网络的预测研究

标签:文库时间:2024-12-15
【bwwdw.com - 博文网】

目 录 1.引言.............................................................. 1

1.1 研究背景及意义 .............................................. 1 1.2 研究现状 .................................................... 2 1.3 主要研究方向 ............................................... 5 2.人工神经网络...................................................... 5

2.1人工神经网络的基本内容 ..................................... 5 2.2人工神经网络的基本特征 ..................................... 7 2.3人工神经网络的工作原理 ...................................... 8 2.4人工神经网络的分析方法 ........................