BET吸附脱附曲线
“BET吸附脱附曲线”相关的资料有哪些?“BET吸附脱附曲线”相关的范文有哪些?怎么写?下面是小编为您精心整理的“BET吸附脱附曲线”相关范文大全或资料大全,欢迎大家分享。
BET吸附-脱附曲线分析及含义
气体吸附等温线通常分为六种,其中五种(I-V)是由国际理论与应用化学会(IUPAC)所定义的。I型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具有很强的吸附能力进而达到平衡。I型等温线通常被认为是在微孔或者单层吸附的标志,由于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进行分类的:微孔(小于2nm),中孔(2-50nm),大孔(大于50nm)。鉴于大多数多孔固体是使用非极性气体(N2 Ar)进行吸附研究的,所以不太可能出现化学吸附作用。因此,对于I型等温线的经典解释是材料具有微孔。然而,I型等温线也有可能是具有孔径尺寸非常接近微孔的介孔材料。尤其是N2在77K或者Ar在77K和87K圆柱孔情况下,I型等温线将在较低的相对压力(大约0.1作用)下达到平衡对于材料是微孔,从最近的一些报道结果得出的。因此,当I型等温线没有在相对压力0.1处达到平衡,该材料有可能存在大量的中孔或者就是单独的中孔。然而,这种I型分布有可能在某种程度上介孔孔径分布范围变宽。这是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于0.1或者更
吸附脱附曲线分析
吸附等温线 - 概述 吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下,分离物质在液相和固相中的浓度关系可用吸附方程式来表示〔1〕。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等,而宏观地总括这些特性的是吸附等温线〔2〕。吸附等温曲线用途广泛,在许多行业都有应用。在地质科学方面,可以用于基于吸附等温线的表面分形研究及其地球科学应用〔3〕;在煤炭方面,煤对混合气体中CH4和CO2的吸附呈现出不同的吸附特点;煤对CO2优先吸附,并且随着压力的升高,煤对CO2选择性吸附…
吸附等温线 - 吸附等温线平衡 在恒定温度下,对应一定的吸附质压力,固体表面上只能存在一定量的气体吸附。通过测定一系列相对压力下相应的吸附量,可得到吸附等温线。吸附等温线是对吸附现象以及固体的表面与孔进行研究的基本数据,可从中研究表面与孔的性质,计算出比表面积与孔径分布。
吸附等温线有以下六种(图 1)。前五种已有指定的类型编号,而第六种是近年补充的。吸附等温线的形状直接与孔的大小、多少有关。
Ⅰ型等温线:Langmuir 等温线
相应于朗格缪单层可逆吸附过程,是窄孔进行
BET
★★注意★★
我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。
◆六类吸附等温线类型
1
几乎每本类似参考书都会提到,前五种是
BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在:
2
低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。
中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这
喷漆废气-吸附浓缩-脱附分解(RTO)废气净化方案 - 图文
青岛路博宏业环保技术开发有限公司 吸附浓缩—脱附分解(RTO)废气处理技术方案 1
某车间废气处理
技 术 方 案
编制单位:青岛路博宏业环保技术开发有限公司 委托单位: 项目编号: 编制时间:
青岛路博宏业环保技术开发有限公司 吸附浓缩—脱附分解(RTO)废气处理技术方案 2 目 录
1 项目概述 ........................................................................................................................................................ 4 2 设计分析 ...................................................................................................
物理吸附仪吸附理论
吸附理论
1、Langmuir理论
Langmuir用动力学理论来处理Ⅰ型吸附等温线,作了如下假设: (1)吸附剂表面是均匀的;
(2)每个吸附位只能吸附一个分子且只限于单层,即吸附是定域化的; (3)吸附质分子间的相互作用可以忽略; (4)吸附-脱附的过程处在动力学平衡之中。 从而得出Langmuir方程如下:
p1p??VKVmVm
V──吸附体积;Vm──单层吸附容量;p──吸附质压力;K──常数。 虽然Langmuir方程描述了化学吸附和Ⅰ型吸附等温线,但总的来说不适用于处理物理吸附和Ⅱ到Ⅴ型吸附等温线。如前所述,Ⅰ型吸附等温线反映的吸附类型可能是化学吸附也可以是微孔中的物理吸附。对于化学吸附,如负载金属催化剂的金属表面积测量是合适的,但对于一般物理吸附来说测量值往往偏大。此外,对于微孔物质如活性炭和分子筛上的吸附,是否是单层吸附还有待商榷等等。 2、BET理论
在物理吸附过程中,在非常低的相对压力下,首先被覆盖的是高能量位。具有较高能量的吸附位包括微孔中的吸附位(因为其孔壁提供重叠的位能)和位于平面台阶的水平垂直缘上的吸附位(因有两个平面的原子对吸附质分子发生作用)。此外,在由多种原子组成的固体表面,吸附位能也会发生改变,这取决于暴
更新:XRD和BET思考题
关于XRD和BET思考题(请及时更新)
(XRD可参考:高等结构分析,马礼敦主编,复旦大学出版社;) (BET目前无教材,信息来自文献和一些专业书籍) 1. X 射线多晶衍射的基本原理(了解布拉格方程) 答:
结构:X射线管、处理台、测角仪、检测器、计算机
X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。
工作原理:利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。衍射X射线满足布拉格方程:2dsinθ=nλ式中:λ是X射线的波长;θ是衍射角;d是结晶面间隔;n是整数。波长λ可用已知的X射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X射线强度的比较,可进行定量分析。
2. X射线物相定性分析原理及步骤
答:每种结晶物质都有其特征结构参数,没有两种衍射花纹完全相同的两种物质,
实验吸附
实验九 吸附
一、实验目的
1、 了解吸附剂的吸附性能和吸附原理; 2、 测定吸附等温线。
二、实验水样与吸附剂
水样采用一定浓度的自配有机物溶液(如浓度为100mg/L的苯酚溶液)。选定某有机物之前首先需确定该有机物浓度的分析方法。
吸附剂为活性炭,有粉末、粒状和柱状等多种形式。粉末活性炭的制备过程如下:吸附剂经磨细(一般采用通过0.1mm筛孔以下的粒径)、水洗后,分别配制成80目和200目,在110℃下干燥(烘干1小时)后备用。
三、实验方法
在恒定温度下,于几个烧杯中加入V(L)溶质浓度为C0(mg/L)的水样,在各烧杯中同时投加不同量m(mg)的活性炭,分别进行搅拌,搅拌时间等于接触时间。试验过程中,不断测定各杯水样中的溶质浓度C1,直到溶质浓度不变的平衡浓度Ce(mg/L)为止。由试验结果可以算出单位重量活性炭可吸附的溶质量,即为吸附容量: V(C0?Ce)x?(mg/mg) mm由吸附容量xm和平衡浓度Ce的关系所绘出的曲线为吸附等温线,表示吸附
等温线的公式为吸附等温式。
1x最常用的吸附等温式是弗兰德利希(Freundich)经验公式:?KCen。在
m双对数坐标纸上,以吸附容量为纵坐标,Ce为横坐标,按静态烧杯实验结果绘图,可
吸附试验
分类号 单位代码 11395 密 级 学 号 1106210105
学生毕业论文
改性松子壳吸附水中碱性品
题 目 作 者 院 (系) 专 业 指导老师 答辩日期
红的工艺研究
薛调琴 化学与化工学院 化学工程与工艺
刘侠
2015年 5 月 23日
榆 林 学 院
毕业论文诚信责任书
本人郑重声明:所呈交的毕业论文,是本人在导师的指导下独立进行研究所取得的成果。毕业论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经公开发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人毕业论文与资料若有不实,愿意承担一切相关的法律责任。
论文作者签名:
吸附树脂
简介
大孔树脂(macroporous resin)又称全多孔树脂,大孔树脂是由聚合单体和交联剂、 致孔剂、分散剂等添加剂经聚合反应制备而成。聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。因此大孔树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100~1000nm之间,故称为大孔吸附树脂。 原理
大孔吸附树脂是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构。树脂一般为白色的球状颗粒,粒度为20~60 目,是一类含离子交换集团的交联聚合物,它的理化性质稳定,不溶于酸、碱及有机溶剂,不受无机盐类及强离子低分子化合物的影响。树脂吸附作用是依靠它和被吸附的分子(吸附质) 之间的范德华引力,通过它巨大的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。 吸附条件和解吸附条件
吸附条件和解吸附条件的选择直接影响着大孔吸附树脂吸附工艺的好坏,因而在整个工艺过程中应综合考虑各种因素,确定最佳吸附解吸条件。影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等) 、上样溶
吸附试验
西南科技大学
静态吸附实验
姓名:XXXX
学号:XXXXXXXXXXX 专业:XXXXXXXXXXX 班级:XXXXXXXXXXX
2012年12月26日
静态吸附实验
一、实验目的
1、 了解吸附剂的吸附性能和吸附原理; 2、 掌握吸附等温线和吸附动力学方程。 3、 熟悉分光光度计的使用以及原理。
二、 实验原理
活性炭的吸附能力以吸附量qe表示,如果在一定压力和温度条件下,用m克活性炭吸附溶液中的溶质,被吸附的溶质为x毫克,则单位重量的活性炭吸附溶质的数量qe即为吸附容量(吸附量)。
qe?xV(C0?Ce)? mm式中:qe :活性炭吸附量,即单位重量的活性炭所吸附的物质重量,mg/g; x:被吸附物质重量,mg; m:活性炭投加量,g; V:水样体积,L;
C0、Ce :分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L。 由吸附容量qe和平衡浓度Ce的关系所绘出的曲线为吸附等温线,表示吸附等温线的公式为吸附等温式。最常用的吸附等温式是朗格缪尔(Langmuir)模型和弗兰德利希(Freundich)模型。Langmuir方程是假设吸附剂的表面是单一、开放的,故属于单分子层吸附模型。Freundlich方程假设吸附剂表面的活性吸