三角恒等变形公式总结
“三角恒等变形公式总结”相关的资料有哪些?“三角恒等变形公式总结”相关的范文有哪些?怎么写?下面是小编为您精心整理的“三角恒等变形公式总结”相关范文大全或资料大全,欢迎大家分享。
24三角恒等变形及应用
第24讲 三角恒等变形及应用
一.【课标要求】
1.经历用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用;
2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
3.能运用上述公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆)。 二.【命题走向】
从近几年的高考考察的方向来看,这部分的高考题以选择、解答题出现的机会较多,有时候也以填空题的形式出现,它们经常与三角函数的性质、解三角形及向量联合考察,主要题型有三角函数求值,通过三角式的变换研究三角函数的性质
本讲内容是高考复习的重点之一,三角函数的化简、求值及三角恒等式的证明是三角变换的基本问题。历年高考中,在考察三角公式的掌握和运用的同时,还注重考察思维的灵活性和发散性,以及观察能力、运算及观察能力、运算推理能力和综合分析能力 三.【要点精讲】
1.两角和与差的三角函数
sin(???)?sin?cos??cos?sin?cos(???)?cos?cos??sin?sin?; ;
tan(???)?tan??tan?1?tan?tan?。
2.二倍角公式
sin2??2sin?cos
三角恒等变换
2008-2011外院为工程管理开设课程表
测绘学院
2008-2011学年 测绘学院为工程管理开设课程
城市建设与安全工程学院
2008-2011学年 城市建设与安全工程学院为工程管理开设课程
环境学院
2008-2011学年
环境学院为工程管理专业开设课程
电子与信息工程学院
2008-2011学年 电子与信息工程学院为工程管理专业开设课程
建筑学院
2008-2011学年 建筑学院为工程管理专业开设课程
交通学院
2008-2011学年 交通学院为工程管理专业开设课程
力学部
2008-2011学年 力学部为工程管理专业开设课程
图书馆
2008-2011学年 图书馆为工程管理专业开设课程
经济与管理学院
2008-2011学年 经济与管理学院为工程管理专业开设课程
理学院
2008-2011学年 理学院为工程管理专业开设课程
外国语学院
2008-2011学年 外国语学院为工程管理专业开设课程
政治教育学院
2008-2011学年 政治教育学院为工程管理专业开设课程
自动化与电气工程学院
2008-2011学年 自动化与电气工程学院为工程管理专业开设课程
三角恒等变换章末总结一
必修四第三章三角恒等变形单元测试(一)一. 选择题(每小题4分,共48分)
1. { EMBED Equation.2 |sin cos
sin cos
1515
1515
o o
o o
+
-
的值为()
A. B. C. D.
2. 可化为()
A. B.
C. D.
3. 若,且,则的值是()
A. B. C. D.
4. 函数的周期为T,最大值为A,则()
A. B.
C. D.
5. 已知,则的值为()
A. B. C. D.
6. 已知,则()
A. B. C. D.
7. 设,则()
A. 4
B.
C.
D.
8. 的值是()
A. B. C. D.
9. 在△ABC中,若,则△ABC的形状一定是()
A. 等腰三角形
B. 直角三角形
C. 等腰直角三角形
D. 等边三角形
10. 要使斜边一定的直角三角形周长最大,它的一个锐角应是()
A. 30°
B. 45°
C. 60°
D. 正弦值为的锐角
11. 已知向量,向量,向量,则向量与的夹角范围为()
A. B.
C.
三角恒等变换章末总结一
必修四第三章三角恒等变形单元测试(一)一. 选择题(每小题4分,共48分)
1. { EMBED Equation.2 |sin cos
sin cos
1515
1515
o o
o o
+
-
的值为()
A. B. C. D.
2. 可化为()
A. B.
C. D.
3. 若,且,则的值是()
A. B. C. D.
4. 函数的周期为T,最大值为A,则()
A. B.
C. D.
5. 已知,则的值为()
A. B. C. D.
6. 已知,则()
A. B. C. D.
7. 设,则()
A. 4
B.
C.
D.
8. 的值是()
A. B. C. D.
9. 在△ABC中,若,则△ABC的形状一定是()
A. 等腰三角形
B. 直角三角形
C. 等腰直角三角形
D. 等边三角形
10. 要使斜边一定的直角三角形周长最大,它的一个锐角应是()
A. 30°
B. 45°
C. 60°
D. 正弦值为的锐角
11. 已知向量,向量,向量,则向量与的夹角范围为()
A. B.
C.
三角恒等变换1
龙文学校-----您值得信赖的专业个性化辅导学校
中小学个性化辅导专家
龙文个性化辅导讲义
(2010 ~ 2011 学年 第 1 学期)
任教科目: 数 学
授课题目:三角恒等变换 年 级: 高 一 任课教师:谭 老 师
龙文师资培训部编制
主管签名:__________ 教务长签名:__________
日 期:__________ 日 期:__________
龙文教育网站:www.longwenedu.com
1
龙文学校-----您值得信赖的专业个性化辅导学校
中小学个性化辅导专家
龙文个性化辅导教案
授课教师 授课时间 课 型 谭婷汀 复习 授课对象 授课题目 使用教具 三角恒等变换 讲义、白纸、水笔 教学目标 1、 了解两角差。两角和的正弦、余弦、正切公式,掌握其公式并能利用它解决某些问题 2、
三角恒等变换讲义
《三角恒等变换》
广州卓越教育集团教育学院2011级第三期数学班 沈荣春
开心哈哈
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。
制胜装备
(1) 和与差的三角函数公式
(a) 会用向量的数量积推导出两角差的余弦公式;
(b) 能利用两角差的余弦公式推导出两角差的正弦、正切公式;
(c) 能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的
正弦、余弦、正切公式,了解他们的内在联系;
(2) 简单的三角恒等变换
能运用上述公式进行简单的恒等变换;
战前动员
失之毫厘,谬以千里
1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时
三角恒等变换知识点总结
三角恒等变换专题
一、知识点总结
1、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ
--=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=
- ? (()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式:
⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-
?升幂公式2
sin 2cos 1,2cos 2cos 122α
ααα=-=+ ?降幂公式2cos 21cos 2αα+=,2
三角恒等变换讲义
《三角恒等变换》
广州卓越教育集团教育学院2011级第三期数学班 沈荣春
开心哈哈
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。
制胜装备
(1) 和与差的三角函数公式
(a) 会用向量的数量积推导出两角差的余弦公式;
(b) 能利用两角差的余弦公式推导出两角差的正弦、正切公式;
(c) 能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的
正弦、余弦、正切公式,了解他们的内在联系;
(2) 简单的三角恒等变换
能运用上述公式进行简单的恒等变换;
战前动员
失之毫厘,谬以千里
1967年8月23日,苏联的联盟一号宇宙飞船在返回大气层时,突然发生了恶性事故——减速降落伞无法打开。苏联中央领导研究后决定:向全国实况转播这次事故。当电视台的播音员用沉重的语调宣布,宇宙飞船在两小时后将坠毁,观众将目睹宇航员弗拉迪米·科马洛夫殉难的消息后,举国上下顿时被震撼了,人们都沉浸在巨大的悲痛之中。
在电视上,观众们看到了宇航员科马洛夫镇定自若的形象。他面带微笑叮嘱女儿说:“你学习时,要认真对待每一个小数点。联盟一号今天发生的一切,就是因为地面检查时
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1
三角函数公式总结
三角函数公式总结
一、三角函数基本知识
1. 几种终边在特殊位置时对应角的集合为
角的终边所在位置 角的集合 x轴正半轴 y轴正半轴 x轴负半轴 y轴负半轴 x轴 y轴 坐标轴 2.α、
??|??k?360?,k?Z? k?Z? ??|??k?360??90?,??|??k?360??180?,??|??k?360??270?,??|??k?180?,k?Z? k?Z? k?Z? ??|??k?180??90?,??|??k?90?,k?Z? k?Z? ?、2α之间的关系 2?终边在第一或第三象限;2α终边在第一或第二象限或y轴正半轴。 2?若α终边在第二象限则终边在第一或第三象限;2α终边在第三或第四象限或y轴负半轴。
2?若α终边在第三象限则终边在第二或第四象限;2α终边在第一或第二象限或y轴正半轴。
2?若α终边在第四象限则终边在第二或第四象限;2α终边在第三或第四象限或y轴负半轴。
2若α终边在第一象限则3. 三角函数基本关系式
(1)已知一点一角始边为x轴正半轴,终边上有一点P(x,y),设r?x2?y2,则
sin??yx2?y2,cos??xx2?y2,tan??y x(2)同角三角函数关系式
sin??cos??1