stata面板门限模型
“stata面板门限模型”相关的资料有哪些?“stata面板门限模型”相关的范文有哪些?怎么写?下面是小编为您精心整理的“stata面板门限模型”相关范文大全或资料大全,欢迎大家分享。
Stata门限模型的操作和结果详细解读
一、门限面板模型概览
如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。
一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因
Stata门限模型的操作和结果详细解读
一、门限面板模型概览
如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。
一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因
Stata门限模型的操作和结果详细解读
一、门限面板模型概览
如果你不愿意看下面一堆堆的文字,更不想看计量模型的估计和检验原理,那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,看看文章计量部分列示的统计量和检验结果。这样,在软件操作时,你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。
一般情况下,一个研究生花费在研究上的时间越多,他的成果越丰富,也就是说,研究成果和研究时间存在某种正向关联。但是,这种关联是线性的吗?在最初阶段,他可能看了两三年的文献,也没有写出一篇优秀的文章,但是一旦过了这个基础期,他的能量和成果将如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几年,他可能会进入另外一种境界,虽然比以前有了极大提高,但是研究进入新的瓶颈期,文章发表的数量减少。由此可以看出,研究成果与研究年限存在一种阶段性的线性关系。这个基础期的结点、瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分,在不同部分,成果和时间的线性关系都不同。这个效应被称为门槛效应或门限效应。 门限效应,是指当一个经济参数达到特定的数值后,引起另外一个经济参数发生突然转向其它发展形式的现象。作为原因
STATA面板数据模型操作命令
STATA 面板数据模型估计命令一览表
一、静态面板数据的STATA处理命令
(一)数据处理
输入数据
●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构
●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析) ●gen lag_y=L.y /////// 产生一个滞后一期的新变量 gen F_y=F.y /////// 产生一个超前项的新变量 gen D_y=D.y /////// 产生一个一阶差分的新变量 gen D2_y=D2.y /////// 产生一个二阶差分的新变量
(二)模型的筛选和检验
●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型) ●xtreg sq cpi unem g se5 ln,fe
对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、
Stata门限模型的操作及结果详细解读
WORD 格式
专业资料整理
范文范例 值得参考
一、门限面板模型概览
如果你不愿意看下面一堆堆的文字, 更不想看计量模型的估计和检验原理, 那就去《数量经济技术经济研究》上,找一篇标题带有“双门槛(或者双门限)”的文章,浏览一遍,
看看文章计量部分列示的统计量和检验结果。 这样,在软件操作时, 你就知道每一步得到的结果有什么意义,怎么解释了,起码心里会有点印象。
一般情况下,一个研究生花费在研究上的时间越多, 他的成果越丰富, 也就是说, 研
究
成果和研究时间存在某种正向关
联。 但是, 这种关联是线性的吗?在最初阶段, 他可能看了
两三年的文献, 也没有写出一篇优秀的文章, 但是一旦过了这个基础
期, 他的能量和成果将 如火山爆发一样喷涌出来,此时,他投入少量的时间,就能产出大量优质文章。再过几
年,
他可能会进入另外一种境界, 虽然比以前有了极大提高, 但是研究进入新的瓶颈
期, 文章发 表的数量减少。 由此可以看出, 研究成果与研究年限存在一种阶段性的线性关
系。
这个基础 期的结点、 瓶颈期的起点就像“门槛”一样把研究阶段分成三个部分, 在不同部分, 成果
和 时间的线性关系都不同。这个效应被称为门槛效应或门限效
应。
门限效应, 是指当一个经济参数达到特定的数
STATA面板数据模型操作命令
STATA 面板数据模型估计命令一览表
一、静态面板数据的STATA处理命令
(一)数据处理
输入数据
●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构
●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析) ●gen lag_y=L.y /////// 产生一个滞后一期的新变量 gen F_y=F.y /////// 产生一个超前项的新变量 gen D_y=D.y /////// 产生一个一阶差分的新变量 gen D2_y=D2.y /////// 产生一个二阶差分的新变量
(二)模型的筛选和检验
●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型) ●xtreg sq cpi unem g se5 ln,fe
对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、
STATA面板数据模型操作命令
STATA 面板数据模型估计命令一览表
一、静态面板数据的STATA处理命令
(一)数据处理
输入数据
●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构
●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析) ●gen lag_y=L.y /////// 产生一个滞后一期的新变量 gen F_y=F.y /////// 产生一个超前项的新变量 gen D_y=D.y /////// 产生一个一阶差分的新变量 gen D2_y=D2.y /////// 产生一个二阶差分的新变量
(二)模型的筛选和检验
●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型) ●xtreg sq cpi unem g se5 ln,fe
对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、
STATA面板数据模型操作命令讲解
STATA 面板数据模型估计命令一览表
一、静态面板数据的STATA处理命令
y???xitiit???it 固定效应模型
y?xitit???it
itit?????it 随机效应模型
(一)数据处理
输入数据
●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构
●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)
●gen lag_y=L.y /////// 产生一个滞后一期的新变量
gen F_y=F.y /////// 产生一个超前项的新变量 gen D_y=D.y /////// 产生一个一阶差分的新变量 gen D2_y=D2.y /////// 产生一个二阶差分的新变量
(二)模型的筛选和检验
●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型) ●xtreg sq cpi unem g se5 ln,fe
面板数据模型
一、我对几种面板数据模型的理解
1 混合效应模型 pooled model
就是所有的省份,都是相同,即同一个方程 ,截距项和斜率项都相同
yit=c+bxit+?it c 与b 都是常数
2 固定效应模型fixed-effect model 和随机效应模型random-effects model 就是所有省份,既有相同的部分,即斜率项都相同;也有不同的部分,即截距项不同。
2.1 固定效应模型 fixed-effect model
yit=ai+bxit+?it cov(ci,xit)≠0
固定效应方程隐含着跨组差异可以用常数项的不同刻画。每个ai都被视为未知的待估参数。xit中任何不随时间推移而变化的变量都会模拟因个体而已的常数项
2.2 随机效应模型 random-effects model
yit=a+ui+bxit+?it cov(a+ui,xit)=0
A是一个常数项,是不可观察差异性的均值,ui为第i个观察的随机差异性,不随时间变化。
3 变系数模型Variable Coefficient Models(变系数也分固定效应和随机效应) 每一个组,都采用一个方程
时间序列模型stata - 图文
时间序列模型
结构模型虽然有助于人们理解变量之间的影响关系,但模型的预测精度比较低。在一些大规模的联立方程中,情况更是如此。而早期的单变量时间序列模型有较少的参数却可以得到非常精确的预测,因此随着Box and Jenkins(1984)等奠基性的研究,时间序列方法得到迅速发展。从单变量时间序列到多元时间序列模型,从平稳过程到非平稳过程,时间序列分析方法被广泛应用于经济、气象和过程控制等领域。本章将介绍如下时间序列分析方法,ARIMA模型、ARCH族模型、VAR模型、VEC模型、单位根检验及协整检验等。
一、基本命令
1.1时间序列数据的处理
1)声明时间序列:tsset 命令
use gnp96.dta, clear list in 1/20 gen Lgnp = L.gnp
tsset date list in 1/20
gen Lgnp = L.gnp
2)检查是否有断点:tsreport, report
use gnp96.dta, clear tsset date tsreport, report drop in 10/10
list in 1/12
tsreport, repo