小学数学人教版知识点总结归纳
“小学数学人教版知识点总结归纳”相关的资料有哪些?“小学数学人教版知识点总结归纳”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学数学人教版知识点总结归纳”相关范文大全或资料大全,欢迎大家分享。
人教版小学数学知识点归纳总结(完整版)
人教版小学数学知识点归纳
第一章 数和数的运算 一 概念 (一)整数
1、 整数的意义 自然数和0都是整数。 2 、自然数
我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位
一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4 、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除
整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。例如15÷3=5,所以15能被3整除,3能整除15。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和约数是相互依存的。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。
一个数的各位上的数的和能被3
小学数学人教版四年级上册重要知识点归纳 - 图文
小学数学人教版四年级上册
小学四年级数学(上册)重要知识点归纳
第一单元 【大数的认识】 1、亿以内数的认识:
10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。 小结:相邻两个计数单位之间的进率是“十”
整数部分 级 ? 亿级 万级 个级 数位 位个 … 位千位百十亿位位千位百十万千百十 亿 亿亿位 万 万万位位位位位 计数千百十亿千百十万千百十一 亿亿亿 … 万万万 单位
2、亿以内数的读法:
小结:①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。3、亿以内数的写法:
小结:①、从高级写起,一级一级往下写。
②、当哪一位上一个计数单位也没有,就在哪一位上写0 。
4、比较亿以内数的大小:
小结:①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,
哪个数最高位上的数大,这个数就大。
③、如果碰到最高位上的数相同的时
小学数学奥数知识点归纳
小学数学奥数知识总结归纳
1.和差倍问题
和差问题 和倍问题 差倍问题
已知条件 几个数的和与差 几个数的和与倍数 几个数的差与倍数
公式适用范围 已知两个数的和,差,倍数关系
公式 ①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数
②(和+差)÷2=较大数 较大数-差=较小数 和-较大数=较小数 和÷(倍数+1)=小数 小数×倍数=大数 和-小数=大数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数 关键问题 求出同一条件下的: 和与差 和与倍数 差与倍数
2.年龄问题的三个基本特征:①两个人的年龄差是不变的;
②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的;
3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。 关键问题:根据题目中的条件确定并求出单一量;
4.植树问题
基本类型 在直线或者不封闭的曲线上植树,两端都植树 在直线或者不封闭的曲线上植树,两端都不植树 在直线或者不封闭的曲线上植树,只有
人教版小学数学知识点总结大全
人教版小学数学知识点大全
基本概念
第一章 数和数的运算
一、概念
(一)整数
1、整数的意义
自然数和0都是整数。 2、自然数
我们在数物体的时候,用来表示物体个数的1,2,3??叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿??都是计数单位。其中“一”是计数的基本单位。 10个1是10,10个10是100??每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 6、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 7、一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
? 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是
初中物理知识点总结归纳(人教版中考)
物理知识点 第一章机械运动
一:长度和时间的测量 1.长度
测量最常用的工具是 :刻度尺。 国际单位是 米,用符号:m表示 我们走两步的距离约是 1米,课桌的高度约0.75米。
常用单位还有千米km、分米dm、厘米cm、毫米mm、微米um,它们关系是: 1km=1000m=103m;1dm=0.1m=10-1m 1cm=0.01m=10-2m;1mm=0.001m=10-3m 1m=106um;1um=10-6m。 2.刻度尺的使用方法:
(1).测量前:认识 零刻度线、 量程 和 分度值; (2).测量时:四会
a会选:根据刻度尺的 量程 和 分度值 选择。
b会放:零刻度线对准被测物体的一端,有刻度的一边要紧靠被测物体且与被测边保持平行,不能歪斜。
C会读;读书时,视线要正对刻度线,估读到分度值的下一位。 D会记:结果有 数值 和 单位。
小资料:门高2m ; 一层楼高3m ;我国铁道标准轨距1.435m 人走一步:0.6m左右 3、时间的测量
国际单位制:秒 S 常用的还有:小时h 分min
1h=60min 1min=60S
测量时间工具:停表、时钟等
小资
高中数学人教版必修一知识点总结梳理
一 集合
1、集合的含义:集合为一些确定的、不同的对象的全体。 2、集合的中元素的三个特性:确定性、互异性、无序性。 3、集合的表示:
(1)用大写字母表示集合:A,B? (2)集合的表示方法:
a、列举法:将集合中的元素一一列举出来 {a,b,c??} b、描述法:集合中元素的公共属性描述出来,写在大括号内表示集合,?x?Rx?2?3? c、韦恩图:用一条封闭曲线的内部表示.
4、集合的分类:
(1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合? 5、元素与集合的关系:a?A;a?A ? 注意:常用数集及其记法:
非负整数集:(即自然数集)N 正整数集: N*或 N+ 整数集:Z 有理数集:Q 实数集:R
6、集合间的基本关系 (1)“包含”关系—子集
定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含
关系,称集合A是集合B的子集。记作:A?B(或B?A)
注意:A?B有两种可能(1)A是B的一部分;
(2)A与B是同
初中数学知识点归纳总结 - 图文
知识点归纳 初中数学知识点 1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根 2、平行四边形的性质: ① 两组对边分别平行的四边形叫做平行四边形。 ② 平行四边形不相邻的两个顶点连成的线段叫他的对角线。 ③ 平行四边形的对边/对角相等。 ④平行四边形的对角线互相平分。 菱形:①一组邻边相等的平行四边形是菱形 ②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。 ③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。 矩形与正方形: ① 有一个内角是直角的平行四边形叫做矩形。 ② 矩形的对角线相等,四个角都是直角。 ③ 对角线相等的平行四边形是矩形。 ④ 正方形具有平行四边形,矩形,菱形的一切性质。 1 ⑤一组邻边相等的矩形是正方形。 多边形: ①N边形的内角和等于(N-2)180度 ②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度) 平均数:对于N个数X1,X2?XN,我们把(X1+X2+?+XN)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。 二、基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 知识点归纳 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 2 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 知识点归纳 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)×180° 51、推论 任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 3 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分, 知识点归纳 那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半 82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 83、(1)比例的基本性质: 如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性质: 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性质: 如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 4 86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例 90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA) 92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94、判定定理3 三边对应成比例,两三角形相似(SSS) 95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97、性质定理2 相似三角形周长的比等于相似比 98、性质定理3 相似三角形面积的比等于相似比的平方 知识点归纳 99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101、圆是定点的距离等于定长的点的集合 102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等 105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线 108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理 不在同一直线上的三点确定一个圆。 110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论2 圆的两条平行弦所夹的弧相等 5 113、圆是以圆心为对称中心的中心对称图形 114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116、定理 一条弧所对的圆周角等于它所对的圆心角的一半 117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线L和⊙O相交 d﹤r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d﹥r 122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理 圆的切线垂直于经过切点的半径 124、推论1 经过圆心且垂直于切线的直线必经过切点
知识点归纳 125、推论2 经过切点且垂直于切线的直线必经过圆心 126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127、圆的外切四边形的两组对边的和相等 128、弦切角定理 弦切角等于它所夹的弧对的圆周角 129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等 134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离 d﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r﹤d﹤R+r(R﹥r) ④两圆内切 d=R
人教版七年级下册生物知识点归纳总结_生物知识点归纳总结大全
人教版七年级下册生物知识点归纳总结:第1-2章
一、人的由来
1、人类的起源和发展
1) 1859年世界著名的进化论建立者达尔文出版《物种起源》一书,提出现代类人猿与人类的共同祖先是森林古猿。
2) 人类的始祖在非洲,亚洲的直立人是非洲迁徙过来的。
3) 在哺乳动物中,与人类亲缘关系最近的是黑猩猩。
4) 由猿到人进化关键的第一步是直立行走,后由于语言的产生终于促进了人类社会的形成。
5) 人类的进化过程主要特征: 起源森林古猿 运动方式使人的形态发生改变:臂行 半直立行走 直立行走。 劳动改善人类的生存条件:不会使用工具 使用天然工具 制造和使用简单工具 制造和使用复杂工具。生活习性以及语言的产生:赤身裸体 懂得御寒、遮羞。
2、人的生殖)男性生殖系统的结构和功能:
睾丸:产生精子和分泌雄性激素(男性主要的性器官)
内生殖器 附睾:贮存和输送精子
输精管:输送精子
精囊腺和前列腺:分泌黏液
外生殖器 阴囊:保护睾丸
阴茎:排精、排尿
女性生殖系统的结构和功能:
卵巢:产生卵细胞和分泌雌性激素(是女性主要的性器官)
内生殖器 输卵管:输送卵细胞,受精的场所
子宫:胚胎、胎儿发育的场所
阴道:精子进入,月经流出,胎儿产出的通道
外生殖器:即外阴
精子:小,似蝌蚪,有长尾,能游动。
卵细胞
人教版初中物理知识点总结归纳特详细
初中物理知识点
第一章声现象知识归纳
1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。
2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。
3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。
4.利用回声可测距离:S=1/2vt
5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。
6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。
8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。
9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆
初中化学知识点总结归纳(人教版)(3)
初中化学知识点总结归纳(人教版)
一、基本概念
1. 物质的变化及性质
(1)物理变化:没有新物质生成的变化。
①宏观上没有新物质生成,微观上没有新分子生成。
②常指物质状态的变化、形状的改变、位置的移动等。
例如:水的三态变化、汽油挥发、干冰的升华、木材做成桌椅、玻璃碎了等等。
(2)化学变化:有新物质生成的变化,也叫化学反应。
①宏观上有新物质生成,微观上有新分子生成。
②化学变化常常伴随一些反应现象,例如:发光、发热、产生气体、改变颜色、生成沉淀等。有时可通过反应现象来判断是否发生了化学变化或者产物是什么物质。
(3)物理性质:物质不需要发生化学变化就能表现出来的性质。
①物理性质也并不是只有物质发生物理变化时才表现出来的性质;例如:木材具有密度的性质,并不要求其改变形状时才表现出来。
②由感官感知的物理性质主要有:颜色、状态、气味等。
③需要借助仪器测定的物理性质有:熔点、沸点、密度、硬度、溶解性、导电性等。
(4)化学性质:物质只有在化学变化中才能表现出来的性质。
例如:物质的金属性、非金属性、氧化性、还原性、酸碱性、热稳定性等。
2. 物质的组成
原子团:在许多化学反应里,作为一个整体参加反应,好像一个原子一样的原子集团。
离子:带电荷的原子或原子团。
元素:具有相同