rlc元件阻抗特性的测定实验报告结论
“rlc元件阻抗特性的测定实验报告结论”相关的资料有哪些?“rlc元件阻抗特性的测定实验报告结论”相关的范文有哪些?怎么写?下面是小编为您精心整理的“rlc元件阻抗特性的测定实验报告结论”相关范文大全或资料大全,欢迎大家分享。
方向阻抗继电器特性实验报告
实验三方向阻抗继电器特性实验
1.实验目的
(1)熟悉整流型LZ-21型方向阻抗继电器的原理接线图,了解其动作特性。 (2)测量方向阻抗继电器的静态Zpu?f???特性,求取最大灵敏角。 (3)测量方向阻抗继电器的静态Zpu?f?Ir?特性,求取最小精工电流。
2.LZ-21型方向阻抗继电器简介
1)LZ-21型方向阻抗继电器构成原理及整定方法
距离保护能否正确动作,取决于保护能否正确地测量从短路点到保护安装处的阻抗,并使该阻抗与整定阻抗比较,这个任务由阻抗继电器来完成。
阻抗继电器的构成原理可以用图3-1来说明。图中,若K点三相短路,短路电流为IK,由PT回路和CT回路引至比较电路的电压分别为测量电压U?m和整
?,那么 定电压Uset??Um11IKZK?ImZm(3-1) nPTnYBnPTnYB式中:nPT、nYB—电压互感器和电压变换器的变比;
ZK—母线至短路点的短路阻抗。 当认为比较回路的阻抗无穷大时,则:
??Uset11IKZI?ImZI(3-2) nCTnCT式中:ZI—人为给定的模拟阻抗。
比较式(3-1)和式(3-2)可见,若假设
ZK IK ZI ?UsetnPT?nYB?nCT,则短路时,由于线路上流过同一电?的大小,
实验四电阻元件伏安特性的测定(精)
实验四 电阻元件伏安特性的测定
【实验简介】
电阻是电学中常用的物理量。利用欧姆定律测导体电阻的方法称为“伏安法”。
为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压和电阻的关系。伏安特性曲线是直线的元件称为“线性元件”,伏安特性曲线不是直线的元件称为“非线性元件”。这两种元件的电阻都可以用伏安法测量。但是,由于测量时电表被引入测量电路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减小系统误差。
乔治·西蒙·欧姆生平简介
乔治·西蒙·欧姆(Georg Simon Ohm,1787~1854年)是德国物理学家。 1826年,欧姆发现了电学上的一个重要定律——欧姆定律,这是他最大的贡献。这一定律可以表示为两种形式:一是部分电路的欧姆定律,通过部分电路的电流,等于该部分电路两端的电压,除以该部分电路的电阻;二是全电路的欧姆定律,即通过闭合电路的电流,等于电路中电源的电动势,除以电路中的总电阻。为了纪念他,人们把电阻的单位命名为欧姆。
【实验目的】
1、了解电学实验常用仪器的规格、性能,学习它们的使用方法。
2、学习电学实验的基本操作规程和连接电路的一般方法。 3、掌握电阻元件伏安特性的测量方法,用伏安法测电阻。 4
电学元件的伏安特性实验报告v1
实验报告
预习报告
【实验目的】
l.学习使用基本电学仪器及线路连接方法。
2.掌握测量电学元件伏安特性曲线的基本方法及一种消除线路误差的方法。 3.学习根据仪表等级正确记录有效数字及计算仪表误差。 准确度等级见书66页。
100mA量程,0.5级电流表最大允许误差 xm 100mA 0.5% 0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差 Vm 3V 0.5% 0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】
直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。 从书中学习使用以上仪器的基础知识。 【实验原理】
给一个电学元件通直流电,测出元件两端的电压和通过它的电流,通常以电压为横坐标、电流为纵坐标画出元件的电流和电压关系曲线,称做该元件的伏安特性曲线。这种研究元件特性的方法叫做伏安法。
用伏安法测量电阻时,线路有两种接法,即电流表内接和电流表外接。电流表内接,测得电阻RX'永远大于真值RX,适于测量大电阻。电流表外接时测得的电阻值永远小于真值,适于测量小电阻。不同的线路会引入不同的线路误差,在实验中要根据被测电阻的大小适当地选择测量线路,减少线路误差,以求提高测量准确度。
电路实验:实验七R.L.C元件阻抗频率特性
实验七项目名称:R.L.C元件阻抗频率特性
一、实验目的
1、验证R.L.C元件的频率特性.
2、熟悉低频信号发生器/函数信号发生器等常用电子仪器的使用方法.
二、实验原理
正弦交流电可用三角函数表示,由最大值,频率f和初相三要素来决定。在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。
在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。此时端电压与电流可用复数欧姆定律来描述:ù=Rì
式中R为线性电阻元件,U与I之间无相角差。电阻中吸收的功率为:
P=UI=RI2
因为略去附加电感和分布电容,所以电阻元件的电阻值与频率无关。R-f关系如图8-1。 电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为具有电容C。在正弦电压作用下流过电容的电流与电压之间也可用复数欧姆定律来表示:ù=XCì
式中XC是电容的容抗,其值为: XC=1/jωc 所以有ù=(1/jωc)*ì=(ì/ωc)∠-900,电压U滞后于电流I的相角为900,电容中所吸收的平均功率为零。
电容的容抗与频率的关系XC-f曲线如图8-1
电感元件因其导线绕成,导线有电阻,在低频时如略去
电路实验:实验七R.L.C元件阻抗频率特性
实验七项目名称:R.L.C元件阻抗频率特性
一、实验目的
1、验证R.L.C元件的频率特性.
2、熟悉低频信号发生器/函数信号发生器等常用电子仪器的使用方法.
二、实验原理
正弦交流电可用三角函数表示,由最大值,频率f和初相三要素来决定。在正弦稳态电路的分析中,由于电路中各处电压、电流都是同频率的交流电,所以电流、电压可用相量表示。
在频率较低的情况下,电阻元件通常略去其电感及分布电容而看成是纯电阻。此时端电压与电流可用复数欧姆定律来描述:ù=Rì
式中R为线性电阻元件,U与I之间无相角差。电阻中吸收的功率为:
P=UI=RI2
因为略去附加电感和分布电容,所以电阻元件的电阻值与频率无关。R-f关系如图8-1。 电容元件在低频也可略去其附加电感及电容极板间介质的功率损耗,因而可认为具有电容C。在正弦电压作用下流过电容的电流与电压之间也可用复数欧姆定律来表示:ù=XCì
式中XC是电容的容抗,其值为: XC=1/jωc 所以有ù=(1/jωc)*ì=(ì/ωc)∠-900,电压U滞后于电流I的相角为900,电容中所吸收的平均功率为零。
电容的容抗与频率的关系XC-f曲线如图8-1
电感元件因其导线绕成,导线有电阻,在低频时如略去
RLC串联谐振电路的实验报告
RLC串联谐振电路的实验报告
(1)实验目的:
1.加深对串联谐振电路条件及特性的理解。
2.掌握谐振频率的测量方法。
3.测定RLC串联谐振电路的频率特性曲线。
(2)实验原理:
RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω
0 =1/LC,谐振频率f
=1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R
和激励电源的角频率ω无关,当ω<ω
0时,电路呈容性,阻抗角φ<0;当ω>ω
时,电路呈感性,阻抗角φ>0。
1、电路处于谐振状态时的特性。
(1)、回路阻抗Z
0=R,| Z
|为最小值,整个回路相当于一个纯电阻电路。
(2)、回路电流I
0的数值最大,I
=U
S
/R。
(3)、电阻上的电压U
R 的数值最大,U
R
=U
S
。
(4)、电感上的电压U
L 与电容上的电压U
C
数值相等,相位相差180°,U
L
=U
C
=QU
S
。
2、电路的品质因数Q
电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即:
Q=U
L (ω
)/ U
S
= U
C
(ω
)/ U
S
=ω
L/R=1/R*
(3)谐振曲线。
电路中电压与
0>非线性元件伏安特性的测量实验报告
实 验 报 告
实验成绩: 批阅日期:
姓 名:汤博 同组姓名: 无
班 级:F0703028 学 号:5070309028 实验日期:2008-3-4
指导老师:助教19
非线性元件伏安特性的测量
【实验目的】
1.学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方法,援用配套的实验仪器,测绘出它们的伏安特性曲线。 2. 学习从实验曲线获取有关信息的方法。
【实验原理】
1、非线性元件的阻值用微分电阻表示,定义为 R = dU/dI。 2、如下图所示,为一般二极管伏安特性曲线
3、测量检波和整流二极管,稳压二极管,发光二极管的伏安特性曲线,电路示意图如下
(1)检波和整流二极管
检波二极管和整流二极管都具有单向导电作用,他们的差别在于允许通过电流的大小和使用频率范围的高低。 (2)稳压二极管
稳压二极管的特点是反向击穿具有可逆性,反向击穿后,稳压二极管两端的电压保持恒定,这个电压叫稳压二极管的工作电压。 (3)发光二极管
发光二极管当两端的电压小于开启电压时不会发光,也没有电流流过。电压一旦超过开启电压,电流急剧上升,二极管发光,电流与电压呈线性关系,直线与电压坐标的交点可以认为是开启电压.
使用公式 eU= 计算光的
RLC串联谐振电路的实验报告
RLC串联谐振电路的实验报告
(1)实验目的:
1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。
3.测定RLC串联谐振电路的频率特性曲线。
(2)实验原理:
RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω0 =1/LC,谐振频率f0=1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R和激励电源的角频率ω无关,当ω<ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。
1、电路处于谐振状态时的特性。
(1)、回路阻抗Z0=R,| Z0|为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I0的数值最大,I0=US/R。 (3)、电阻上的电压UR的数值最大,UR =US。
(4)、电感上的电压UL与电容上的电压UC数值相等,相位相差180°,UL=UC=QUS。 2、电路的品质因数Q
电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即:
Q=UL
0>晶闸管直流调速系统参数和环节特性的测定实验报告
晶闸管直流调速系统参数和 环节特性的测定实验报告
一、实验目的
1.熟悉晶闸管直流调速系统的组成及其基本结构。
2.掌握晶闸管直流调速系统的参数测试及反馈环节测定方法和测试条件。 二、实验内容
1.测定晶闸管直流调速系统主电路总电阻 R。 2.测定晶闸管直流调速系统主电路总电感 L。
3.测定直流电动机 - 发电机 - 测速发电机飞轮惯量 GD2。 4.测定晶闸管直流调速系统主电路电磁时间常数 Td。 5.测定直流发电机电动势常数Ce和转矩常数 CT。 6.测定晶闸管直流调速系统机电时间常数 Tm。 7.测定晶闸管触发及整流装置特性 Ud =?(Uct)。 8.测定测速发电机特性 UTG =? (n)。 三、实验设备
四、实验原理
五、实验步骤
(一)测定晶闸管直流调速系统主电路电阻。 伏安比较法测量
1. 测量电枢回路总电阻R
R=Ra + RL + Rn (电枢电阻Ra、平波电抗器电阻RL 、整流装置内阻Rn ) (1)不加励磁、电机堵转 (2)合上S1和S2,
调节给定,使输出电压到30%-70%的额定电压 调节电阻,使枢电流80%-90%的额定电流 测定U1和I1。 (3)断开S2
实验4 RC、RL、RLC电路的稳态特性
实验4 RC、RL、RLC电路的稳态特性
【实验目的】
1. 观测RC、RL、RLC串联电路的幅频特性和相频特性。 2. 学习用双踪示波器测量位相差。
【仪器用具】
TDS2012数字示波器、FG-506A型功率函数信号发生器、YB2173B数字交流毫伏表、电容、电感、电阻箱、接线板等。
【原理概述】
在RC、RL和RLC串联电路中,若加在电路两端的正弦交流信号保持不变,则当电路中的电流和电压变化达到稳定状态时,电流(或某元件两端的电压)与频率之间的关系特性称为幅频特性;电压、电流之间的位相差与频率之间的关系特性称为相频特性。下面分三种串联电路来分析。
1.RC串联电路
RC串联电路如图1所示。根据图形可得:
??U??U??I?(R?1) (1) URCj?C由(1)式可得到电路的总阻抗Z、电流的有效值I、电阻两端电压的有效值UR、电容两端电压的有效值UC,以及电路电压与电流之间的位相差?分别为:
Z?R2?(12) (2) ?C (3)