高三数学圆锥曲线压轴题
“高三数学圆锥曲线压轴题”相关的资料有哪些?“高三数学圆锥曲线压轴题”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高三数学圆锥曲线压轴题”相关范文大全或资料大全,欢迎大家分享。
高三数学圆锥曲线创新题
1 / 9 谈谈解析几何中的——
解题·编题·组题
教师的教学活动,决不单是备课与上课。特别是数学教师,整天打交道最多的,就是数学题了。本文(或本讲座)准备就解析几何的知识内容,说说与解题·编题·组题相关的问题。
⒈解题
⒈1先看两个例子(本文各节自成例序)
例1 一直线ι与x 轴、y 轴都不平行,也不过原点;点M (x,y)在ι上;点P (2,1),Q(3x+2y-1,3x-2y+1)在与ι垂直的直线ι′上。求直线ι的方程。
例2 一X 白纸上仅有双曲线的图象,试用圆规与直尺画出它的焦点。
例1是一道与直线相关的题目,难道直线问题还有一般来说做不出来的题目吗?例2给人的感觉就是一道神秘兮兮、头绪玄乎的难题。
作为高中数学教师,具有一定的解题能力,甚至是解决具有相当难度数学问题的能力,应该说是必须修行与具备的功力。对于解数学题所显现的能力X 畴,主要是指哪些方面呢?
⒈2解题能力,不言而喻,主要就是指普通数学问题不被难倒,甚至具有相当难度数学问题也难不倒的能力。这里指的数学问题,当然主要是指中学数学X 畴的基本初等数学问题。
例2后面还要说到,我们先看例1的解决。
例1 解:设直线ι的方程为y=kx+b,k 存在,kb
高三数学圆锥曲线创新题
1 / 9 谈谈解析几何中的——
解题·编题·组题
教师的教学活动,决不单是备课与上课。特别是数学教师,整天打交道最多的,就是数学题了。本文(或本讲座)准备就解析几何的知识内容,说说与解题·编题·组题相关的问题。
⒈解题
⒈1先看两个例子(本文各节自成例序)
例1 一直线ι与x 轴、y 轴都不平行,也不过原点;点M (x,y)在ι上;点P (2,1),Q(3x+2y-1,3x-2y+1)在与ι垂直的直线ι′上。求直线ι的方程。
例2 一X 白纸上仅有双曲线的图象,试用圆规与直尺画出它的焦点。
例1是一道与直线相关的题目,难道直线问题还有一般来说做不出来的题目吗?例2给人的感觉就是一道神秘兮兮、头绪玄乎的难题。
作为高中数学教师,具有一定的解题能力,甚至是解决具有相当难度数学问题的能力,应该说是必须修行与具备的功力。对于解数学题所显现的能力X 畴,主要是指哪些方面呢?
⒈2解题能力,不言而喻,主要就是指普通数学问题不被难倒,甚至具有相当难度数学问题也难不倒的能力。这里指的数学问题,当然主要是指中学数学X 畴的基本初等数学问题。
例2后面还要说到,我们先看例1的解决。
例1 解:设直线ι的方程为y=kx+b,k 存在,kb
文科数学高考压轴题(圆锥曲线)解题策略1
攸县高考数学(文科)研究材料(二):
高考数学压轴题---圆锥曲线
解题策略及常考题型
圆锥曲线问题将几何与代数知识有机结合在一起,较好地考察了学生的数学思维和创新,灵
活处理问题的能力,是高考命题的热点之一.高考中要做好圆锥曲线这道大题,我们还需要一定的解题策略 ,并通过自己不断地领悟和练习提高自己的解题能力.
一、圆锥曲线知识要点及解题方法
圆锥曲线解题的本质就是将题干中的条件和图形中隐含的几何特征转化成等式或不等式,最后通过代数运算解决问题,而其中的关键是怎样转化或构造不等式。其常考查的知识点可以归纳如下:
1、抓住定义构造等式,定义是圆锥曲线的核心和根本,涉及焦点时,优先利用定义解决问题。 2、抓住题中特殊几何关系来构造等式或应用几何关系使解题简化,运用“重几何,轻代数”观念处理问题。
①内心:1、三条角平分线交点; 2、角平分线上的点到两边距离相等; 3、切线长定理; 4、面积法(S△ABI+S△ACI+S△BCI=S△ABC) ②重心:1、中线交点; 2、AH=2HD,H为重心; ③垂心:三条高线交点(可用垂直构造等式)
④外心:垂直平分线交点(垂直平分线的性质构造等式)
文科数学高考压轴题(圆锥曲线)解题策略1
攸县高考数学(文科)研究材料(二):
高考数学压轴题---圆锥曲线
解题策略及常考题型
圆锥曲线问题将几何与代数知识有机结合在一起,较好地考察了学生的数学思维和创新,灵
活处理问题的能力,是高考命题的热点之一.高考中要做好圆锥曲线这道大题,我们还需要一定的解题策略 ,并通过自己不断地领悟和练习提高自己的解题能力.
一、圆锥曲线知识要点及解题方法
圆锥曲线解题的本质就是将题干中的条件和图形中隐含的几何特征转化成等式或不等式,最后通过代数运算解决问题,而其中的关键是怎样转化或构造不等式。其常考查的知识点可以归纳如下:
1、抓住定义构造等式,定义是圆锥曲线的核心和根本,涉及焦点时,优先利用定义解决问题。 2、抓住题中特殊几何关系来构造等式或应用几何关系使解题简化,运用“重几何,轻代数”观念处理问题。
①内心:1、三条角平分线交点; 2、角平分线上的点到两边距离相等; 3、切线长定理; 4、面积法(S△ABI+S△ACI+S△BCI=S△ABC) ②重心:1、中线交点; 2、AH=2HD,H为重心; ③垂心:三条高线交点(可用垂直构造等式)
④外心:垂直平分线交点(垂直平分线的性质构造等式)
2013高考数学压轴题突破训练 - 圆锥曲线(含详解)
高考数学压轴题突破训练:圆锥曲线
1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|.w.w.w.k.s.5.u.c.o.m
(Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.
(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C于E、F两点;另外平面上的点G、H满足:
????????????????????????????1AG??AD(??R);○2GE?GF?2GH;○3GH?EF?0. ○
求点G的横坐标的取值范围.
l2 M A BD N B l1 2. 设椭圆的中心是坐标原点,焦点在x轴上,离心率 e?上的点的最远距离是4,求这个椭圆的方程.
3,已知点P(0,3)到这个椭圆225x2y2,其左、右顶点分别 3. 已知椭圆C1:2?2?1(a?b?0)的一条准线方程是x?4abx2y2是A、B;双曲线C2:2?2?1的一条渐近线方程为3x-5y=0.
ab(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;
(Ⅱ)在第一象限内取双曲线C2上一点P,连结
圆锥曲线压轴题终尖子生辅导
2014圆锥曲线压轴题尖子生辅导
一.填空题(共3小题) 1.已知椭圆C:
+
=1(a>b>0)的左、右焦点和短轴的两个端点构成边长为2的正方形.
(Ⅰ)求椭圆 C的方程; (Ⅱ)过点Q(1,0)的直线 l与椭圆C 相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1?k2 最大时,求直线l的方程.
2.如图,在△ABC中,已知A(﹣3,0),B(3,0),CD⊥AB于D,△ABC的垂心为 H且
.
(Ⅰ)求点H的轨迹方程;
(Ⅱ)设P(﹣1,0),Q(1,0),那么
能否成等差数列?请说明理由;
(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.
3.如图,已知直线
与抛物线
和圆
都相切,
F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线,直线交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上;
(3)在(2)的条件下,
记点M所在的定直线为l2,直线l2与y轴交点为N,连接MF
交抛物线C1于P,Q两点,求△NPQ的面积S的取值范围.
二.解答题(共27小题)
4.用总长44.8m的钢条制做一个底
08届高三数学圆锥曲线的应用1
g3.1087圆锥曲线的应用(1)
一、知识要点: 1.相关点法(代入法):对于两个动点P(x0,y0),Q(x,y),点P在已知曲
线上运动导致点Q运动形成轨迹时,只需根据条件找到这两个点的坐标
?x0?f(x,y)之间的等量关系并化为?然后将其代入已知曲线的方程即得
y?g(x,y)?0到点Q的轨迹方程. 2.参数法(交规法):当动点P的坐标x,y之间的直接关系不易建立时,可
适当地选取中间变量t,并用t表示动点P的坐标x,y,从而动点轨迹的参
?x?f(t)数方程?消去参数t,便可得到动点P的的轨迹的普通方程,但要注
?y?g(t)意方程的等价性,即有t的范围确定出x,y的范围. 二、基础训练
x2y2??1的右焦点为F,Q、P分别为椭圆上和椭圆外一点,1.已知椭圆
2516且点Q分FP的比为1:2,则点P的轨迹方程为 ( )
(x?6)2y2(x?6)2y2??1 ??1 (A)(B)
75487548(x?6)2y2(2x?3)24y2??1 ??1 (C)(D)
2251442251442.设动点P在直线x?1?0上,O为坐标原点,以OP为直角边,点O为直
角顶点作等腰直角三角形OPQ,则动点Q的轨迹是
备战2012年高考压轴题(圆锥曲线与导数)
备战2013年高考压轴题集(圆锥曲线部分)
1.(12分)已知抛物线、椭圆和双曲线都经过点M?1,2?,它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.
(Ⅰ)求这三条曲线的方程;
(Ⅱ)已知动直线l过点P?3,0?,交抛物线于A,B两点,是否存在垂直于x轴的直线l?被以AP为直径的圆截得的弦长为定值?若存在,求出l?的方程;若不存在,说明理由.
2.(本小题满分12分)将圆O: x?y?4上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C的方程;
(2) 设O为坐标原点, 过点F(3, 0)的直线l与C交于A、B两点, N为线段AB的中点,延长线段ON交C于点E.
求证: OE?2ON的充要条件是|AB| ?3.
3.(12分)E、F是椭圆x?2y?4的左、右焦点,l是椭圆的右准线,点P?l,过点
22
22E的直线交椭圆于A、B两点.
(1) 当AE?AF时,求?AEF的面积; (2) 当AB?3时,求AF?BF的大小; (3) 求?EPF的最大值.
BEOFyAPMx1
4.(本小题满分14分)
x2y2设双曲线2?2=1( a > 0, b > 0 )
高二数学训练题:圆锥曲线(2)
高二数学训练题:圆锥曲线(二)
安徽省浮山中学 方龙祥
一、选择题:
2?????x21、已知椭圆C:?y?1的右焦点为F,右准线为l,点A?l,线段AF交椭圆C于B,若FA?F3B2,
则|AF|等于( )
A.2
B.2
2
????
2
C.3 D.3
x22、若直线mx+ny=4和圆O:x+y=4没有交点,则过(m、n)的直线与椭圆个数( )
w_wwk#s5_uo*m9?y24?1 的交点
A.至多一个 B.2个 C.1个 D.0个
3、设斜率为2的直线l过抛物线y2?ax(a?0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( )
(A)y2?4x 4、过双曲线
xa22
22(B)y2?8x (C)y2??4x (D)y2??8x
?yb?1(a?0,b?0)的左顶点A作斜率为1的直线,该直线与双曲线的两条渐进线
????1????的交点分别为B,C。若AB?BC,则双曲线的离心率是( )
2A. 3 B. 2 C. 10 D. 5 25、已知两点A(?1,0),B(1,0),且点C(x,y)
圆锥曲线利用点的坐标解决圆锥曲线问题
第九章 利用点的坐标处理解析几何问题 解析几何
利用点的坐标处理解析几何问题
有些解析几何的题目,问题的求解不依赖于传统的“设点,联立,消元,韦达定理整体代入”步骤,而是能够计算出交点的坐标,且点的坐标并不复杂,然后以点的坐标作为核心去处理问题。 一、基础知识:
1、韦达定理的实质:在处理解析几何的问题时,韦达定理的运用最频繁的,甚至有的学生将其视为“必备结构”,无论此题是否有思路,都先联立方程,韦达定理。然而使用“韦达定理”的实质是什么?实质是“整体代入”的一种方式,只是因为在解析几何中,一些问题的求解经常与x1?x2,x1x2,y1?y2,y1y2相关,利用“韦达定理”可进行整体代入,可避免因为这几个根的形式过于复杂导致运算繁琐。所以要理解“韦达定理”并不是解析几何的必备工具,只是在需要进行整体代入时,才运用的一种手段。 2、利用点坐标解决问题的优劣:
(1)优点:如果能得到点的坐标,那么便可应对更多的问题,且计算更为灵活,不受
x1?x2,x1x2,y1?y2,y1y2形式的约束
(2)缺点:有些方程的根过于复杂(例如用求根公式解出的根),从而使得点