高中数学不常见的结论公式

“高中数学不常见的结论公式”相关的资料有哪些?“高中数学不常见的结论公式”相关的范文有哪些?怎么写?下面是小编为您精心整理的“高中数学不常见的结论公式”相关范文大全或资料大全,欢迎大家分享。

高中数学常用公式及结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学

常用公式及结论 王新敞

高中数学常用公式及结论

1. 元素与集合的关系:x?A?x?CUA,x?CUA?x?A.??A?A?? 2.德摩根公式 :CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB. 3.包含关系:

A?B?A?B?A?A?B?B?CUB?CUA?A?CUB???CUA?B?R

4.元素个数关系:

card(A?B)?cardA?cardB?card(A?B) card(A?B?C)?cardA?cardB?cardC

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2?1个;非空子集有2?1个;非空的真子集有2?2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0);

(2)顶点式f(x)?a(x?h)2?k(a?0);(当已知抛物线的顶点坐标(h,k)时,设为此式) (3)零点式f(x)?a(x?x1)(x?x2)(a?0);(当已知抛物线与x轴的交点坐标为

nnnn(x1,0),(x2,0)时,

高中数学常用公式及常用结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

§01. 集合与简易逻辑

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2 个;真子集有2–1个;非空子集有2 –1个;非空的真子集有2–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

nnnnN?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?

2011高中数学常用公式和结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第一章 集合与简易逻辑

考试内容:

集合、子集、补集、交集、并集。

逻辑联结词、四种命题、充分条件和必要条件。 考试要求:

(1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。 一、集合的概念与运算 1.集合

(1)集合是不定义的概念:①任意性;②确定性;③互异性;④无序性 (2)表示法:列举法、描述法

????N?Z?Q?R?C (3)特殊符号: N*??(4)分类:有限集、无限集、空集(?) 2.子集、真子集

(1)A?B?对于任意x?A?x?B

A?B?A?B?且存在b?B,b?A

(2)??A,A?A(子集包含空集与本身)

1nnn???Cn?2,有2?1个真子集,有(3)?a1,a2,?,an?子集个数是Cn0?Cn2?1个非空子集,有2?2个非真空子集。

nn(4)A?B?A?B且B?A

1

3.交集、并集、补集

(1)A?B??xx?A且x?B? (2)A?B??xx?A或x?B? (3)CuA??xx?u且

2011高中数学常用公式和结论

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第一章 集合与简易逻辑

考试内容:

集合、子集、补集、交集、并集。

逻辑联结词、四种命题、充分条件和必要条件。 考试要求:

(1)理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合。

(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充分条件、必要条件及充要条件的意义。 一、集合的概念与运算 1.集合

(1)集合是不定义的概念:①任意性;②确定性;③互异性;④无序性 (2)表示法:列举法、描述法

????N?Z?Q?R?C (3)特殊符号: N*??(4)分类:有限集、无限集、空集(?) 2.子集、真子集

(1)A?B?对于任意x?A?x?B

A?B?A?B?且存在b?B,b?A

(2)??A,A?A(子集包含空集与本身)

1nnn???Cn?2,有2?1个真子集,有(3)?a1,a2,?,an?子集个数是Cn0?Cn2?1个非空子集,有2?2个非真空子集。

nn(4)A?B?A?B且B?A

1

3.交集、并集、补集

(1)A?B??xx?A且x?B? (2)A?B??xx?A或x?B? (3)CuA??xx?u且

高中数学常用公式及常用结论2

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系:只能用属于符号而集合之间的关系用包含符号

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

注意:若A?B,则A可能是空集 练习:

1、设集合A?{x|x?12?x?0},B?{x|x?a},若A?B??,则a的取值范围( C )

(A)a?2 (B)a??2 (C)a??1 (D) -1

2、已知不等式x2?ax?0的解集为集合A=?x0?x?1?,(1)则a?________(a?1) (2)设集合B=?yy?x?a?且A?B?B,则a的取值范围是 a?0

23、设集合A?{1,2},则满足A?B?A的集合B的个数是B

(A)1 (B)3 (C)4 (D)8

4.若集合A有n个元素,则它的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。

4、已知

高中数学 - 常用公式及常用结论大全

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

新课标:(高中数学)

新课标:高中数学常用公式及常用结论

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

?A?CUB???CUA?B?R

4.容斥原理

card(A?B)?cardA?cardB?card(A?B)

card(A?B?C)?cardA?cardB?cardC?card(A?B)

?card(A?B)?card(B?C)?card(C?A)?card(A?B?C).

5.集合{a1,a2,?,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

6.二次函数的解析式的三种形式

(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)1

高中数学常用公式及常用结论2

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

高中数学常用公式及常用结论

1. 元素与集合的关系:只能用属于符号而集合之间的关系用包含符号

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(A?B)?CUA?CUB;CU(A?B)?CUA?CUB.

3.包含关系

A?B?A?A?B?B?A?B?CUB?CUA

注意:若A?B,则A可能是空集 练习:

1、设集合A?{x|x?12?x?0},B?{x|x?a},若A?B??,则a的取值范围( C )

(A)a?2 (B)a??2 (C)a??1 (D) -1

2、已知不等式x2?ax?0的解集为集合A=?x0?x?1?,(1)则a?________(a?1) (2)设集合B=?yy?x?a?且A?B?B,则a的取值范围是 a?0

23、设集合A?{1,2},则满足A?B?A的集合B的个数是B

(A)1 (B)3 (C)4 (D)8

4.若集合A有n个元素,则它的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有2n–2个.

【点评】本题考查了并集运算以及集合的子集个数问题,同时考查了等价转化思想。

4、已知

高中数学基础知识、常见结论详细解析

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

在家学习网 http://www.zaijiaxue.com/

数学高考基础知识、常见结论详解

一、集合与简易逻辑:

一、理解集合中的有关概念

(1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

集合元素的互异性:如:

A?{x,xy,lg(xy)},B{0,|x|,y},求A;

(2)集合与元素的关系用符号?,?表示。

(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、

实数集 。

(4)集合的表示法: 列举法 , 描述法 , 韦恩图 。

注意:区分集合中元素的形式:如:A?{x|y?x2?2x?1};B?{y|y?x2?2x?1};

C?{(x,y)|y?x2?2x?1};

D?{x|x?x2?2x?1};

E?{(x,y)|y?x2?2x?1,x?Z,y?Z};

yF?{(x,y')|y?x2?2x?1};G?{z|y?x2?2x?1,z?}

x(5)空集是指不含任何元素的集合。({0}、?和{?}的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。

注意:条件为

A?B,在讨

新课标高中数学——常用公式及常用结论大全

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

新课标:袁轲教学资料(高中数学)

38. 平均增长率的问题

如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有y?N(1?p)x. 39.数列的同项公式与前n项的和的关系

n?1?s1,( 数列{an}的前n项的和为sn?a1?a2???an). an??s?s,n?2?nn?140.等差数列的通项公式

an?a1?(n?1)d?dn?a1?d(n?N*);

其前n项和公式为

n(a1?an)n(n?1)?na1?d 22d1?n2?(a1?d)n. 22sn?41.等比数列的通项公式

an?a1qn?1?a1n?q(n?N*); q其前n项的和公式为

?a1(1?qn),q?1?sn??1?q

?na,q?1?1?a1?anq,q?1?或sn??1?q.

?na,q?1?142.等比差数列?an?:an?1?qan?d,a1?b(q?0)的通项公式为

?b?(n?1)d,q?1?an??bqn?(d?b)qn?1?d;

,q?1?q?1?其前n项和公式为

?nb?n(n?1)d,(q?1)?sn??. d1?qnd?(b?1?q)q?1?1?qn,(q?1)?43.分期付款(按揭贷款)

ab(1?b)n每次还款x?元(贷

高中数学常用结论集锦

标签:文库时间:2024-11-08
【bwwdw.com - 博文网】

第 1 页 共 10 页 1.德摩根公式 ();()U U U U U U C A

B C A C B C A B C A C B ==.

2U U A B A A B B A B C B C A =?=????U A C B ?=ΦU C A B R ?=

3. 若A={123,,n a a a a },则A的子集有2n 个,真子集有(2n -1)个,非空真子集有(2n -2)个

4.二次函数的解析式的三种形式 ①一般式2()(0)f x ax bx c a =++≠;② 顶点式 2()()(0)f x a x h k a =-+≠;

③零点式12()()()(0)f x a x x x x a =--≠.

三次函数的解析式的三种形式①一般式32

()(0)f x ax bx cx d a =+++≠

②零点式123()()()()(0)f x a x x x x x x a =---≠

5.设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->?

[]1212()()0(),f x f x f x a b x x ->?-在上是增函数; []1212()()()0x x f x f x --

()()0