数学规划模型论文

“数学规划模型论文”相关的资料有哪些?“数学规划模型论文”相关的范文有哪些?怎么写?下面是小编为您精心整理的“数学规划模型论文”相关范文大全或资料大全,欢迎大家分享。

数学规划论文-马科维兹模型及其改进

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

马科维兹模型及其改进

摘要:

证券投资者通过把资金投资一种或几种收益较高的证券以获得最大限度的收益,但是收益与风险是相辅相成的,高收益必然包含高风险.因此投资者需要选择若干证券加以组合,以分散其投资风险,尽可能的实现低风险和高收益.1952年马科维兹理论的提出开创了金融理论的先河,改变了人们经验投资的传统,使投资组合更加科学性和广泛性.

马科维兹模型实质是在不损失收益率的条件下最大限度地分散投资风险,能够指导人们科学地选择证券投资组合以实现效益最大化.本文主要介绍马科维兹理论及模型的建立以及最新的研究进展,并在此基础上提出了三种模型目标函数的改进方案:引进决策系数?、引进厌恶偏好程度?及目标规划,并对此进行了对比分析.

三种改进方案都能使原本的多目标规划转化为单目标规划,并且都有其适用的范围:决策系数?适用于比较两种不同投资组合的优劣;引进偏好程度?能够在未给定预期收益及预期风险下定制个人的最优投资组合;利用目标规划能够使个人选择尽可能的达到自己预期的最优投资组合.

关键字:马科维兹模型;投资组合;数学规划

Markowitz model and its improvement

Abstract:

Securities investors

数学建模实验答案 - - 数学规划模型二

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

实验05 数学规划模型㈡(2学时)

(第4章 数学规划模型)

1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102

(1) (LP)在模型窗口中输入以下线性规划模型

max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3 ≤ 600

280x1 + 250x2 + 400x3 ≤ 60000

x1, x2, x3 ≥ 0

并求解模型。

★(1) 给出输入模型和求解结果(见[101]):

model: TITLE汽车厂生产计划(LP); !文件名:p101.lg4; max=2*x1+3*x2+4*x3; 1.5*x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; end (2) (IP)在模型窗口中输入以下整数规划模型

max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3 ≤ 600

280x1 + 250x2 + 400x3 ≤ 60000

x1, x2, x3均为非负整数 并求解模型。

LINGO函数@gin见提示。

★(2) 给出输入模型和求解结果(见[102]模型、结果):

model: TITLE汽车厂生产计划(IP); 1

!文件名:p102.lg4; max=2*x1+3*x2+4*x3; 1.5*x1+3*x

数学建模实验答案 - - 数学规划模型二

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

实验05 数学规划模型㈡(2学时)

(第4章 数学规划模型)

1.(求解)汽车厂生产计划(LP,整数规划IP)p101~102

(1) (LP)在模型窗口中输入以下线性规划模型

max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3 ≤ 600

280x1 + 250x2 + 400x3 ≤ 60000

x1, x2, x3 ≥ 0

并求解模型。

★(1) 给出输入模型和求解结果(见[101]):

model: TITLE汽车厂生产计划(LP); !文件名:p101.lg4; max=2*x1+3*x2+4*x3; 1.5*x1+3*x2+5*x3<600; 280*x1+250*x2+400*x3<60000; end (2) (IP)在模型窗口中输入以下整数规划模型

max z = 2x1 + 3x2 + 4x3 s.t. 1.5x1 + 3x2 + 5x3 ≤ 600

280x1 + 250x2 + 400x3 ≤ 60000

x1, x2, x3均为非负整数

1

并求解模型。

LINGO函数@gin见提示。

★(2) 给出输入模型和求解结果(见[102]模型、结果):

model: TITLE汽车厂生产计划(IP); !文件名:p102.lg4; max=2*x1+3*x2+4*x3; 1.5*x1+3*x2+5*x3

数学建模论文写作—模型假设

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

数学建模论文写作—模型假设

1. 每个交巡警服务平台的职能、警力配备都基本相同

2. 事故发生地都近似模拟在各路口节点。

3. 每个交巡警服务平台配备一辆警车,一旦遇到突发事件,即刻从平台驶向案发地,不考虑期间的反应时间。

4. 不考虑平台所在节点本身作为案发处的出警情况。

5. 相邻两个路口节点之间的道路认为是直线且无其他小道。并且各处的路况都是相同的,不考虑交通意外(如汽车抛锚、堵塞、路口停顿等)、气候的影响,不考虑转弯时的车速变化等等,这些都是为了保证警车任意时刻在任意路段上的行驶速度均为60km/h。

6. 两个不同节点处的发案率是相互独立的,即任意时刻,两互异节点的法案情况两个不同节点处的案发情况不发生单向或双向的影响

7. 不存在越点管辖和交叉管辖的情况。

以下是对上述假设的一些说明,及对在解决问题的过程中,我们发现的题中需要阐述的部分概念、条件与因素的分析:

对于假设一,每个交巡警服务平台的职能、警力配备这两个基本参数都大致相同,这是我们分析整个问题的前提假设,实质就是各平台在我们模型中的权数是相同的。

对于假设二,我们将案发的地点限制在各节点上。其一,在实际生活中,道路上的任何一点都有发案的可能,但通过查阅全国多个大中型城市道路网络案发的资料数据

优化问题中的数学规划模型

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

优化问题中的数学规划模型

1.优化问题及其一般模型

优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。例如:

设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。

一般地,优化模型可以表述如下:

minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)

这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。

2.数学规划模型分类

“数学规划是运筹学和管理科学中应用及其广泛的分支。在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。”[H.P.Williams.数学规划模型的建立]。

数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,

数学建模论文_传染病模型)

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

传染病模型

摘要

“传染病的传播过程”数学模型是通过控制已感染人群来实现的。利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。

一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。为此,必须从诸多因素中,抓住主要因素,去掉次要

线性规划问题及其数学模型

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

第二章 线性规划的对偶理论与灵敏度分析习题

1. 写出下列线性规划问题的对偶问题。

minz?2x1?2x2?4x3?x1?3x2?4x3?2? (1)?2x1?x2?3x3?3??x1?4x2?3x3?5??x1,x2?0,x3无约束minz???cijxiji?1j?1mnmaxz?5x1?6x2?3x3?x1?2x2?2x3?5? (2) ??x1?5x2?x3?3

??4x1?7x2?3x3?8??x1无约束,x2?0,x3?0minz??cjxjj?1n?n?naijxj?bi(i?1,?,m1?m)(3)??xij?ai(i?1,?,m) (4)?? j?1j?1?????n?m??aijxj?bi(i?m1?1,m2?2,?,m)??xij?bj(j?1,?,n)?j?1?i?1?x?0无约束(j?1,?,n,?,n)?xij?0(i?1,?,m;j?1,?,n)1?j?????2. 判断下列说法是否正确,为什么?

(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题

线性规划问题及其数学模型

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

第二章 线性规划的对偶理论与灵敏度分析习题

1. 写出下列线性规划问题的对偶问题。

minz?2x1?2x2?4x3?x1?3x2?4x3?2? (1)?2x1?x2?3x3?3??x1?4x2?3x3?5??x1,x2?0,x3无约束minz???cijxiji?1j?1mnmaxz?5x1?6x2?3x3?x1?2x2?2x3?5? (2) ??x1?5x2?x3?3

??4x1?7x2?3x3?8??x1无约束,x2?0,x3?0minz??cjxjj?1n?n?naijxj?bi(i?1,?,m1?m)(3)??xij?ai(i?1,?,m) (4)?? j?1j?1?????n?m??aijxj?bi(i?m1?1,m2?2,?,m)??xij?bj(j?1,?,n)?j?1?i?1?x?0无约束(j?1,?,n,?,n)?xij?0(i?1,?,m;j?1,?,n)1?j?????2. 判断下列说法是否正确,为什么?

(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题

第三章数学规划模型

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

第三章 数学规划模型

§3.1 引言

优化是我们在工程技术、经济管理等诸多领域中最常遇到的问题之一。结构设计要在满足强度要求的条件下时所用的总重量最轻;编制生产计划要在人力、设备等条件限制下时产品的总利润最高;安排运输方案要在满足物资要求和不超过供应能力条件下时运输总费用最少;确定某种产品如橡胶的原料配方药是它的强度、硬度、变形等多种指标都达到最优。

人们解决这种问题的手段大致有以下几种:一是依靠过去的经验,这看来似乎切实可行,且不担风险,但会融入决策者过多的主观因素从而难以确定所给决策的优越性;二是作大量的实验,这固然真实可靠,却常要耗费太多的资金和人力;三是建立数学模型,求解最优决策。虽然因建模时要作适当的简化可能使结果不一定可行或达到实际上的最优,但是它基于客观的数据,又不需要太大的费用,具有前两种手段无可比拟的优点。如果在数学建模的基础上再辅以适当的经验和实验,就可以得到实际问题的一个比较圆满地解答。在决策科学化、定量化的呼声日渐高涨的今天,这一方法的推广应用无疑是符合时代潮流和形势发展需要的。

一项工程由m个市供电,已知每个施工点对某种材料的需求为r I(单位:吨),施工点的位置坐标为(ai,

公交车调度的规划 数学模型

标签:文库时间:2024-09-14
【bwwdw.com - 博文网】

第19卷 建模专辑

2002年02月工 程 数 学 学 报JOURNALOFENGINEERINGMATHEMATICSVol.19Supp.Feb.2002文章编号:100523085(2002)0520067208

公交车调度的规划数学模型

薄立军, 要尉鹏, 王艳辉

指导老师: 刘红卫

(西安电子科技大学,西安710071)

编者按:本文建立了两种优化模型来研究公交车调度问题。第一种模型中使用Fisher聚类算法对客流分布进行了优化分

类,这使得客流时间段的划分更为合理。第二种模型基于随机服务系统,主要利用了GI/M/n排队系统的平均队长及平均等待时间等基本公式。因城市交通客流是随机的,利用排队理论来研究公交车调度问题更能刻划问题的实质。但单交通线上的公交车具有串联服务的性质,这与GI/M/n系统不大符合。第二种模型有明显的不足。

摘 要:本文根据有序样本聚类的Fisher算法,给出一种峰值曲线的优化方法,通过该方法我们得出了上行客流峰值为5

个,其峰值区间为:5:0026:00,6:0029:00,9:00216:00,16:00218:00,18:00223:00;下行客流峰值为5个,其峰值区间为:5:0027:00,7:0029:00,9:0021