小学奥数不定方程
“小学奥数不定方程”相关的资料有哪些?“小学奥数不定方程”相关的范文有哪些?怎么写?下面是小编为您精心整理的“小学奥数不定方程”相关范文大全或资料大全,欢迎大家分享。
小学奥数2-2-3 不定方程与不定方程组 教师版
不定方程与不定方程组
教学目标
1.利用整除及奇偶性解不定方程 2.不定方程的试值技巧
3.学会解不定方程的经典例题
知识精讲
一、知识点说明 历史概述
不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.
考点说明
在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义
1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。 3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解
三、不定方程的试值
6年级奥数-不定方程
龍腾教育 非淡泊无以明志,非宁静无以致远! 龍腾学科教师辅导讲义
讲义编号 LTJYsxsrl005
学员编号:LTJY001 年 级:六年级 课时数:3 学员姓名: 王窈瑾 辅导科目:数学 学科教师:孙仁龙 学科组长签名及日期 课 题 授课时间:2015.01.15 教学目标 重点、难点 2015.01.14 教务长签名及日期 一次不定方程(组)的整数解问题 备课时间:2015.01.02 1.理解不定方程(组)的含义 2.掌握一次不定方程(组)的定理和相关解题方法 重点:不定方程定理的理解 难点:解不定方程方法与技巧的灵活运用 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出考点及考试要求 现. 教学内容 【写在前面】 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条
6年级奥数-不定方程
龍腾教育 非淡泊无以明志,非宁静无以致远! 龍腾学科教师辅导讲义
讲义编号 LTJYsxsrl005
学员编号:LTJY001 年 级:六年级 课时数:3 学员姓名: 王窈瑾 辅导科目:数学 学科教师:孙仁龙 学科组长签名及日期 课 题 授课时间:2015.01.15 教学目标 重点、难点 2015.01.14 教务长签名及日期 一次不定方程(组)的整数解问题 备课时间:2015.01.02 1.理解不定方程(组)的含义 2.掌握一次不定方程(组)的定理和相关解题方法 重点:不定方程定理的理解 难点:解不定方程方法与技巧的灵活运用 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出考点及考试要求 现. 教学内容 【写在前面】 不定方程(组)是数论中的一个重要课题,不仅是数学竞赛,甚至在中考试卷中也常常出现. 对于不定方程(组),我们往往只求整数解,甚至是只求正整数解,加上条
2019精选教育小学奥数教程不定方程与不定方程组 教师版 全国通用 doc
不定方程与不定方程组
教学目标
1.利用整除及
奇偶性解不定方程 2.不定方程的试值技巧 3.学会解不定方程的经典例题
知识精讲
一、知识点说明 历史概述
不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.
考点说明
在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。
二、不定方程基本定义
1、定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。
2、不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。 3、研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解
三、不定方程的试值技
不定方程
六年级奥数 不定方程
【知识要点】
如果一个方程(组)的未知数的个数多于方程的个数,那么这个方程(组)就叫做不定方程(组)。 不定方程是数论中最古老的一个分支,它的研究在我国已延续了数千年,至今仍是令人感兴趣的课题。 不定方程的内容非常丰富,但在小学数学竞赛中,我们主要讨论二元一次不定方程,形如ax±by=c(a、b、c为已知的整数)的方程,我们称为二元一次不定方程,又称丢番图方程,以纪念生于公元三世纪的希腊数学家丢番图,他写了一本关于这类方程的书。
一个不定方程一般总有无穷多组解,但小学阶段主要涉及整系数不定方程的整数解。不定方程通常利用不等式及整除性来求解。 例1.
求3x+4y=23的自然数解。
练习一
1、 求3x+2y=25的自然数解。
2、 求4x+5y=37的自然数解。
3、 求5x-3y=16的最小自然数解。
例2
求下列方程组的正整数解。
5x+7y+3z=25 3x-y-6z=2
练习2
求下面方程组的自然数解。
1、 4x+3y-2z=7 2、 7x+9y+11z=68
3x+2y+4z=21 5x+7y+9z=52
不定方程和解不定方程应用题经典
1
不定方程
———研究其解法
方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。
一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法
根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。
如:方程x﹢y﹢z = 100共有几组正整数解?
解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??
当 x = 98时,y﹢z = 2,这时有一个解。
∵ 98﹢97﹢96﹢??﹢1=
98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。
2、表格记数法
如:方程式4x﹢7 y =55共有哪些正
不定方程和解不定方程应用题经典
1
不定方程
———研究其解法
方程,这个词对于同学们来说,再熟悉不过了,它在数学中占了很大的一个板块,许多题目都可以通过方程来得到答案,那么自然而然,它的解法就尤为重要了。 然而,我今天想为大家介绍的是一种特殊的方程——不定方程,因为它往往有多个或无数个解,他的解法相对较多较难,以下就是关于不定方程的一些问题。
一、不定方程是指未知数的个数多于方程个数的方程,其特点是往往有不唯一的解。 二、不定方程的解法 1、筛选试验法
根据方程特点,确定满足方程整数的取值范围,对此范围内的整数一一加以试验,筛去不合理的值。
如:方程x﹢y﹢z = 100共有几组正整数解?
解:当x = 1时y﹢z = 99,这时共有98个解:(y,z)为(1,98) (2,97)??(98,1)。 当x = 2时y﹢z = 98,这时共有97个解:(y,z)为(1,97) (2,96)??(97,1)。 ??
当 x = 98时,y﹢z = 2,这时有一个解。
∵ 98﹢97﹢96﹢??﹢1=
98?99= 4851 2∴ 方程x﹢y﹢z = 100共有4851个正整数解。
2、表格记数法
如:方程式4x﹢7 y =55共有哪些正
小学奥数16数阵图
1.10.5数阵图
1.10.5.1基础知识
数阵是由幻方演化出来的另一种数字图。幻方一般均为正方形。图中纵、横、对角线数字和相等。数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。变幻多姿,奇趣迷人。一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。 解数阵问题的一般思路是:
1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。有时,因数字存在不同的组合方法,答案往往不是唯一的。 1.10.5.2辐射型数阵
例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。 解:已给出的五个数字和是:1+2+3+4+5=15
题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。只有5连加两次才能使五个数字的和增加5,关键找到了,
小学奥数公式
公式
1. 平方差公式 a2 - b2 = ( a + b )( a – b )
2. 和平方公式 ( a + b )2 = a2 + 2ab + b2 3. 差平方公式 ( a - b )2 = a2 - 2ab + b2 4. 等差数列公式 Sn =
n =
= a1 +
+ 1
5. 立方和公式: a3 + b3 = ( a + b )( a2 – ab + b2 ) 6. 立方差公式: a3 – b3 = ( a - b )( a2 + ab + b2 ) 7. 奇数和公式: 1 + 3 + 5 + …… + (2n-1) = n2
8. 偶数和公式: 2 + 4 + 6 + …… + 2n = n(n+1)
9. 多数平方和公式: 12 + 22 + 32 + …… + n2 =
10. 多数立方和公式: 13 + 23 + 33 + …… + n3 = (1 + 2 + …… + n)2
不定方程选讲
不定方程选讲
一、一次不定方程(组)
1.求不定方程x+y+z=2007正整数解的个数。 2.求不定方程2x+3y+5z=15的正整数解。 3.解不定方程11x+15y=7。 4.解不定方程50x+45y+36z=10。
?5x+7y+2z=24,
5.解不定方程组?
?3x-y-4z=4.
6.解不定方程6x+15y+21z+9w=30。
7.求有多少个正整数对(m,n),使得7m+3n=102004,且m︱n。(04年日本数学奥林匹克) 二、二次不定方程及其常用解法
8.求满足方程2x2+5y2=11(xy-11)的正整数数组(x,y)。 9.解不定方程14x2-24xy+21y2+4x-12y-18=0。 10.解不定方程3x2+5y2=345。
11.解不定方程x2-5xy+6y2-3x +5y-11=0。 12.求方程xy-2x+y=4的整数解。
35
13求能使等式 + =1成立的所有正整数m,n。
mn14.求方程2xy-2x2+3x-5y+11=0的整数解。 15.求方程3xy+y2-6x-2y=2的整数解。 16.求方程x2+y= x2y-1000的正整数解。 17.求所有的整数对(x,y),使得x3 = y3+2y2 +1。